OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany.
Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany.
Theranostics. 2021 Jun 26;11(16):7844-7868. doi: 10.7150/thno.58655. eCollection 2021.
Radiotherapy is one of the curative treatment options for localized prostate cancer (PCa). The curative potential of radiotherapy is mediated by irradiation-induced oxidative stress and DNA damage in tumor cells. However, PCa radiocurability can be impeded by tumor resistance mechanisms and normal tissue toxicity. Metabolic reprogramming is one of the major hallmarks of tumor progression and therapy resistance. Specific metabolic features of PCa might serve as therapeutic targets for tumor radiosensitization and as biomarkers for identifying the patients most likely to respond to radiotherapy. The study aimed to characterize a potential role of glutaminase (GLS)-driven glutamine catabolism as a prognostic biomarker and a therapeutic target for PCa radiosensitization. We analyzed primary cell cultures and radioresistant (RR) derivatives of the conventional PCa cell lines by gene expression and metabolic assays to identify the molecular traits associated with radiation resistance. Relative radiosensitivity of the cell lines and primary cell cultures were analyzed by 2-D and 3-D clonogenic analyses. Targeting of glutamine (Gln) metabolism was achieved by Gln starvation, gene knockdown, and chemical inhibition. Activation of the DNA damage response (DDR) and autophagy was assessed by gene expression, western blotting, and fluorescence microscopy. Reactive oxygen species (ROS) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were analyzed by fluorescence and luminescence probes, respectively. Cancer stem cell (CSC) properties were investigated by sphere-forming assay, CSC marker analysis, and limiting dilution assays. Single circulating tumor cells (CTCs) isolated from the blood of PCa patients were analyzed by array comparative genome hybridization. Expression levels of the and gene in tumor tissues and amino acid concentrations in blood plasma were correlated to a progression-free survival in PCa patients. Here, we found that radioresistant PCa cells and prostate CSCs have a high glutamine demand. GLS-driven catabolism of glutamine serves not only for energy production but also for the maintenance of the redox state. Consequently, glutamine depletion or inhibition of critical regulators of glutamine utilization, such as GLS and the transcription factor MYC results in PCa radiosensitization. On the contrary, we found that a combination of glutamine metabolism inhibitors with irradiation does not cause toxic effects on nonmalignant prostate cells. Glutamine catabolism contributes to the maintenance of CSCs through regulation of the alpha-ketoglutarate (α-KG)-dependent chromatin-modifying dioxygenase. The lack of glutamine results in the inhibition of CSCs with a high aldehyde dehydrogenase (ALDH) activity, decreases the frequency of the CSC populations and reduces tumor formation in xenograft mouse models. Moreover, this study shows that activation of the ATG5-mediated autophagy in response to a lack of glutamine is a tumor survival strategy to withstand radiation-mediated cell damage. In combination with autophagy inhibition, the blockade of glutamine metabolism might be a promising strategy for PCa radiosensitization. High blood levels of glutamine in PCa patients significantly correlate with a shorter prostate-specific antigen (PSA) doubling time. Furthermore, high expression of critical regulators of glutamine metabolism, GLS1 and MYC, is significantly associated with a decreased progression-free survival in PCa patients treated with radiotherapy. Our findings demonstrate that GLS-driven glutaminolysis is a prognostic biomarker and therapeutic target for PCa radiosensitization.
放射疗法是治疗局限性前列腺癌(PCa)的一种有治愈可能的治疗选择。放射疗法的治愈潜力是通过肿瘤细胞中辐射诱导的氧化应激和 DNA 损伤来介导的。然而,PCa 的放射治愈能力可能会受到肿瘤耐药机制和正常组织毒性的阻碍。代谢重编程是肿瘤进展和治疗耐药的主要标志之一。PCa 的特定代谢特征可能成为肿瘤放射增敏的治疗靶点,并作为识别最有可能对放疗有反应的患者的生物标志物。本研究旨在描述谷氨酰胺酶(GLS)驱动的谷氨酰胺分解代谢作为 PCa 放射增敏的预后生物标志物和治疗靶点的潜在作用。我们通过基因表达和代谢测定分析了常规 PCa 细胞系的原代细胞培养物和放射抗性(RR)衍生物,以确定与辐射抗性相关的分子特征。通过 2-D 和 3-D 集落形成分析分析了细胞系和原代细胞培养物的相对放射敏感性。通过谷氨酰胺(Gln)饥饿、基因敲低和化学抑制来靶向谷氨酰胺代谢。通过基因表达、western blot 和荧光显微镜评估 DNA 损伤反应(DDR)和自噬的激活。通过荧光和发光探针分别分析活性氧(ROS)和还原型谷胱甘肽(GSH)与氧化型谷胱甘肽(GSSG)的比例。通过球体形成分析、CSC 标记分析和有限稀释分析研究癌症干细胞(CSC)特性。从 PCa 患者的血液中分离出的单个循环肿瘤细胞(CTC)通过阵列比较基因组杂交进行分析。肿瘤组织中基因和基因的表达水平以及血浆中氨基酸浓度与 PCa 患者的无进展生存期相关。在这里,我们发现放射抗性 PCa 细胞和前列腺 CSCs 对谷氨酰胺有很高的需求。GLS 驱动的谷氨酰胺分解代谢不仅为能量产生提供了途径,也为维持氧化还原状态提供了途径。因此,谷氨酰胺耗竭或抑制谷氨酰胺利用的关键调节剂,如 GLS 和转录因子 MYC,可导致 PCa 放射增敏。相反,我们发现,谷氨酰胺代谢抑制剂与照射结合不会对非恶性前列腺细胞造成毒性作用。谷氨酰胺分解代谢通过调节 α-酮戊二酸(α-KG)依赖性染色质修饰双加氧酶来维持 CSCs。缺乏谷氨酰胺会抑制具有高醛脱氢酶(ALDH)活性的 CSCs,降低 CSC 群体的频率,并减少异种移植小鼠模型中的肿瘤形成。此外,这项研究表明,缺乏谷氨酰胺时,ATG5 介导的自噬的激活是肿瘤耐受辐射介导的细胞损伤的一种生存策略。与自噬抑制联合使用,阻断谷氨酰胺代谢可能是 PCa 放射增敏的一种有前途的策略。PCa 患者血液中高水平的谷氨酰胺与 PSA 倍增时间较短显著相关。此外,在接受放疗的 PCa 患者中,关键的谷氨酰胺代谢调节剂 GLS1 和 MYC 的高表达与无进展生存期缩短显著相关。我们的研究结果表明,GLS 驱动的谷氨酰胺分解代谢是 PCa 放射增敏的预后生物标志物和治疗靶点。
J Pharmacol Exp Ther. 2025-3
Autophagy. 2019-7-15
Transl Oncol. 2025-8-20
Signal Transduct Target Ther. 2025-8-5
Pediatr Discov. 2023-7-30
Front Immunol. 2025-4-10
Front Oncol. 2020-12-22
Cancers (Basel). 2021-1-2
Semin Cancer Biol. 2022-7
Cancers (Basel). 2020-2-7
Nat Commun. 2020-1-24
Signal Transduct Target Ther. 2019