Suppr超能文献

癌症干细胞的代谢靶向

Metabolic Targeting of Cancer Stem Cells.

作者信息

Mukha Anna, Dubrovska Anna

机构信息

OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.

出版信息

Front Oncol. 2020 Dec 22;10:537930. doi: 10.3389/fonc.2020.537930. eCollection 2020.

Abstract

Most human tumors possess a high heterogeneity resulting from both clonal evolution and cell differentiation program. The process of cell differentiation is initiated from a population of cancer stem cells (CSCs), which are enriched in tumor-regenerating and tumor-propagating activities and responsible for tumor maintenance and regrowth after treatment. Intrinsic resistance to conventional therapies, as well as a high degree of phenotypic plasticity, makes CSCs hard-to-target tumor cell population. Reprogramming of CSC metabolic pathways plays an essential role in tumor progression and metastatic spread. Many of these pathways confer cell adaptation to the microenvironmental stresses, including a shortage of nutrients and anti-cancer therapies. A better understanding of CSC metabolic dependences as well as metabolic communication between CSCs and the tumor microenvironment are of utmost importance for efficient cancer treatment. In this mini-review, we discuss the general characteristics of CSC metabolism and potential metabolic targeting of CSC populations as a potent strategy to enhance the efficacy of conventional treatment approaches.

摘要

大多数人类肿瘤具有高度异质性,这是由克隆进化和细胞分化程序共同导致的。细胞分化过程始于一群癌症干细胞(CSCs),这些细胞在肿瘤再生和肿瘤增殖活动中富集,并负责肿瘤维持以及治疗后的复发。对传统疗法的内在抗性以及高度的表型可塑性,使得癌症干细胞成为难以靶向的肿瘤细胞群体。癌症干细胞代谢途径的重编程在肿瘤进展和转移扩散中起着至关重要的作用。这些途径中的许多赋予细胞对微环境应激的适应性,包括营养物质短缺和抗癌治疗。更好地理解癌症干细胞的代谢依赖性以及癌症干细胞与肿瘤微环境之间的代谢通讯对于有效的癌症治疗至关重要。在本综述中,我们讨论了癌症干细胞代谢的一般特征以及将癌症干细胞群体作为增强传统治疗方法疗效的有效策略进行潜在代谢靶向的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfe0/7783393/92b7e898de05/fonc-10-537930-g001.jpg

相似文献

1
Metabolic Targeting of Cancer Stem Cells.
Front Oncol. 2020 Dec 22;10:537930. doi: 10.3389/fonc.2020.537930. eCollection 2020.
2
Cancer Stem Cell Metabolism and Potential Therapeutic Targets.
Front Oncol. 2018 Jun 5;8:203. doi: 10.3389/fonc.2018.00203. eCollection 2018.
3
Cancer stem cells (CSCs): metabolic strategies for their identification and eradication.
Biochem J. 2018 May 9;475(9):1611-1634. doi: 10.1042/BCJ20170164.
4
Energy metabolism in cancer stem cells.
World J Stem Cells. 2020 Jun 26;12(6):448-461. doi: 10.4252/wjsc.v12.i6.448.
5
Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy.
Front Oncol. 2021 Nov 5;11:756888. doi: 10.3389/fonc.2021.756888. eCollection 2021.
7
Multidimensional analysis of tumor stem cells: from biological properties, metabolic adaptations to immune escape mechanisms.
Front Cell Dev Biol. 2024 Aug 8;12:1441081. doi: 10.3389/fcell.2024.1441081. eCollection 2024.
8
Cancer stem cell metabolism: target for cancer therapy.
BMB Rep. 2018 Jul;51(7):319-326. doi: 10.5483/bmbrep.2018.51.7.112.
9
Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting.
BMB Rep. 2017 Mar;50(3):117-125. doi: 10.5483/bmbrep.2017.50.3.222.

引用本文的文献

1
Role of mitochondria in physiological activities, diseases, and therapy.
Mol Biomed. 2025 Jun 19;6(1):42. doi: 10.1186/s43556-025-00284-5.
3
Tumor microenvironment-induced tumor cell plasticity: relationship with hypoxic stress and impact on tumor resistance.
Front Oncol. 2023 Oct 11;13:1222575. doi: 10.3389/fonc.2023.1222575. eCollection 2023.
4
6
Metabolic Reprogramming by Ribitol Expands the Therapeutic Window of BETi JQ1 against Breast Cancer.
Cancers (Basel). 2023 Sep 1;15(17):4356. doi: 10.3390/cancers15174356.
8
Metabolomics of Breast Cancer: A Review.
Metabolites. 2022 Jul 13;12(7):643. doi: 10.3390/metabo12070643.
9
Molecular Docking as a Therapeutic Approach for Targeting Cancer Stem Cell Metabolic Processes.
Front Pharmacol. 2022 Feb 21;13:768556. doi: 10.3389/fphar.2022.768556. eCollection 2022.

本文引用的文献

4
Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers.
Cancer Res. 2020 Apr 15;80(8):1630-1643. doi: 10.1158/0008-5472.CAN-19-1363. Epub 2020 Jan 7.
6
Metabolic heterogeneity confers differences in melanoma metastatic potential.
Nature. 2020 Jan;577(7788):115-120. doi: 10.1038/s41586-019-1847-2. Epub 2019 Dec 18.
8
CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth.
Nat Cell Biol. 2019 Nov;21(11):1425-1435. doi: 10.1038/s41556-019-0407-1. Epub 2019 Nov 4.
9
A Shifty Target: Tumor-Initiating Cells and Their Metabolism.
Int J Mol Sci. 2019 Oct 28;20(21):5370. doi: 10.3390/ijms20215370.
10
Metformin attenuates hepatoma cell proliferation by decreasing glycolytic flux through the HIF-1α/PFKFB3/PFK1 pathway.
Life Sci. 2019 Dec 15;239:116966. doi: 10.1016/j.lfs.2019.116966. Epub 2019 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验