文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探讨脑胶质瘤影像诊断与治疗用放射性药物需求的观点。

A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma.

机构信息

Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa.

Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa.

出版信息

Theranostics. 2021 Jul 6;11(16):7911-7947. doi: 10.7150/thno.56639. eCollection 2021.


DOI:10.7150/thno.56639
PMID:34335972
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8315062/
Abstract

Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.

摘要

尽管进行了大量的临床试验和临床前开发,胶质母细胞瘤(GB)的治疗仍然是一个挑战。即使采用最佳的标准治疗方法,GB 的平均生存率也只有一年。然而,未来有望提供有效的针对患者的治疗方法,包括靶向放射性核素治疗(TRT)。放射性药物开发的进步使我们有可能在分子水平上评估疾病,从而实现个体化诊断。这为治疗方式的个性化、靶向化选择提供了可能性。基于放射性药物的治疗方法是一个令人兴奋的发展,具有很大的潜力推动个性化医学的发展。然而,有效的针对胶质母细胞瘤的靶向放射性核素治疗(TRT)需要注意一些问题和要求。本文综述了现有的用于胶质母细胞瘤的核医学成像和 TRT 策略。对新的针对胶质母细胞瘤的靶向治疗放射性药物的最佳特性和临床适应证进行了批判性讨论。讨论了对目标的选择的考虑因素,即目标的特异性存在、表达水平和对目标的药理学可及性,特别关注血脑屏障的穿透性。本文还概述了最有前途的放射性核素,并对相关放射性药物和治疗药物(基于小分子、肽和单克隆抗体)进行了验证。此外,将介绍一般毒性问题和安全药理学方面的问题,特别是针对大脑的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/caa3d2b54c5e/thnov11p7911g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/6a2fc7f3a1d1/thnov11p7911g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/18efc5da6c5e/thnov11p7911g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/999a7481bc16/thnov11p7911g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/cf6033d385d0/thnov11p7911g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/d6007e723bff/thnov11p7911g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/b295f3afd2c3/thnov11p7911g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/0fb4170cab5d/thnov11p7911g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/a17c895f83ff/thnov11p7911g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/4eea6816d36b/thnov11p7911g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/b905ad7ce641/thnov11p7911g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/caa3d2b54c5e/thnov11p7911g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/6a2fc7f3a1d1/thnov11p7911g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/18efc5da6c5e/thnov11p7911g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/999a7481bc16/thnov11p7911g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/cf6033d385d0/thnov11p7911g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/d6007e723bff/thnov11p7911g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/b295f3afd2c3/thnov11p7911g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/0fb4170cab5d/thnov11p7911g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/a17c895f83ff/thnov11p7911g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/4eea6816d36b/thnov11p7911g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/b905ad7ce641/thnov11p7911g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fb/8315062/caa3d2b54c5e/thnov11p7911g011.jpg

相似文献

[1]
A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma.

Theranostics. 2021

[2]
Pb Theranostic Radiopharmaceuticals for Image-guided Radionuclide Therapy for Cancer.

Curr Med Chem. 2020

[3]
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma.

Cancers (Basel). 2022-4-3

[4]
Targeted Radionuclide Therapy in Glioblastoma.

ACS Appl Mater Interfaces. 2024-8-7

[5]
Targeted radionuclide therapy: frontiers in theranostics.

Front Biosci (Landmark Ed). 2017-6-1

[6]
Targeted alpha therapy: part I.

Curr Radiopharm. 2011-7

[7]
Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma.

Pharmaceuticals (Basel). 2021-6-29

[8]
Radionuclide-based theranostics - a promising strategy for lung cancer.

Eur J Nucl Med Mol Imaging. 2023-7

[9]
Advancements in the development of radiopharmaceuticals for nuclear medicine applications in the treatment of bone metastases.

Nucl Med Biol. 2024

[10]
Terbium radionuclides for theranostic applications in nuclear medicine: from atom to bedside.

Theranostics. 2024

引用本文的文献

[1]
Locoregional radionuclide therapy of glioblastoma with [At]At-PDA-FAPI.

Sci Rep. 2025-5-25

[2]
DET induces apoptosis and suppresses tumor invasion in glioma cells via PI3K/AKT pathway.

Front Oncol. 2025-1-9

[3]
Radiopharmaceuticals and their applications in medicine.

Signal Transduct Target Ther. 2025-1-3

[4]
Precision radiotherapy with molecular-profiling of CNS tumours.

J Neurooncol. 2025-3

[5]
Pre-operative dual-time-point [F]FET PET differentiates CDKN2A/B loss and PIK3CA mutation status in adult-type diffuse glioma: a single-center prospective study.

Eur J Nucl Med Mol Imaging. 2025-1

[6]
Preclinical evaluation of CXCR4 peptides for targeted radionuclide therapy in glioblastoma.

EJNMMI Radiopharm Chem. 2024-7-15

[7]
Targeted Alpha Therapy for Glioblastoma: Review on In Vitro, In Vivo and Clinical Trials.

Target Oncol. 2024-7

[8]
Clinical Theranostics in Recurrent Gliomas: A Review.

Cancers (Basel). 2024-4-28

[9]
Tumor-derived extracellular vesicles regulate macrophage polarization: role and therapeutic perspectives.

Front Immunol. 2024

[10]
Can current preclinical strategies for radiopharmaceutical development meet the needs of targeted alpha therapy?

Eur J Nucl Med Mol Imaging. 2024-6

本文引用的文献

[1]
Molecular and Cellular Complexity of Glioma. Focus on Tumour Microenvironment and the Use of Molecular and Imaging Biomarkers to Overcome Treatment Resistance.

Int J Mol Sci. 2020-8-6

[2]
Radiopharmaceutical therapy in cancer: clinical advances and challenges.

Nat Rev Drug Discov. 2020-7-29

[3]
Boron neutron capture therapy for malignant brain tumors.

J Neurooncol. 2020-8

[4]
Current status of PET imaging in neuro-oncology.

Neurooncol Adv. 2019-5-28

[5]
Combined radiation strategies for novel and enhanced cancer treatment.

Int J Radiat Biol. 2020-9

[6]
Fibroblast Activation Protein (FAP) specific PET for advanced target volume delineation in glioblastoma.

Radiother Oncol. 2020-9

[7]
177Lu-/68Ga-PSMA Theranostics in Recurrent Glioblastoma Multiforme: Proof of Concept.

Clin Nucl Med. 2020-12

[8]
PET Detection of Cerebral Necrosis Using an Infarct-Avid Agent 2-Deoxy-2-[F]Fluoro-D-Glucaric Acid (FGA) in a Mouse Model of the Brain Stroke.

Mol Imaging Biol. 2020-10

[9]
Metabolic targeting can improve the efficiency of brain tumor biopsies.

Semin Oncol. 2020

[10]
High uptake of Ga-PSMA and F-DCFPyL in the peritumoral area of rat gliomas due to activated astrocytes.

EJNMMI Res. 2020-5-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索