Suppr超能文献

一种用于筛选和设计潜在的严重急性呼吸综合征冠状病毒2蛋白酶抑制剂的机器学习回归模型。

A machine learning regression model for the screening and design of potential SARS-CoV-2 protease inhibitors.

作者信息

Janairo Gabriela Ilona B, Yu Derrick Ethelbhert C, Janairo Jose Isagani B

机构信息

Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines.

Biology Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines.

出版信息

Netw Model Anal Health Inform Bioinform. 2021;10(1):51. doi: 10.1007/s13721-021-00326-2. Epub 2021 Jul 24.

Abstract

UNLABELLED

The widespread infection caused by the 2019 novel corona virus (SARS-CoV-2) has initiated global efforts to search for antiviral agents. Drug discovery is the first step in the development of commercially viable pharmaceutical products to deal with novel diseases. In an effort to accelerate the screening and drug discovery workflow for potential SARS-CoV-2 protease inhibitors, a machine learning model that can predict the binding free energies of compounds to the SARS-CoV-2 main protease is presented. The optimized multiple linear regression model, which was trained and tested on 226 natural compounds demonstrates reliable prediction performance ( test = 0.81, RMSE test = 0.43), while only requiring five topological descriptors. The externally validated model can help conserve and maximize available resources by limiting biological assays to compounds that yielded favorable outcomes from the model. The emergence of highly infectious diseases will always be a threat to human health and development, which is why the development of computational tools for rapid response is very important.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13721-021-00326-2.

摘要

未标注

2019新型冠状病毒(SARS-CoV-2)引发的广泛感染促使全球展开对抗病毒药物的搜寻。药物研发是开发应对新型疾病的具有商业可行性的药品的第一步。为了加速潜在SARS-CoV-2蛋白酶抑制剂的筛选和药物研发流程,本文提出了一种能够预测化合物与SARS-CoV-2主要蛋白酶结合自由能的机器学习模型。该优化后的多元线性回归模型在226种天然化合物上进行了训练和测试,展现出可靠的预测性能(测试集R² = 0.81,测试集均方根误差RMSE = 0.43),且仅需五个拓扑描述符。经过外部验证的该模型能够通过将生物测定限制在模型预测结果良好的化合物上,有助于节省并最大化可用资源。高传染性疾病的出现始终是对人类健康和发展的威胁,这就是为何开发快速响应的计算工具非常重要的原因。

补充信息

在线版本包含可在10.1007/s13721-021-00326-2获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b00d/8308067/4206d0471b55/13721_2021_326_Fig1_HTML.jpg

相似文献

1
A machine learning regression model for the screening and design of potential SARS-CoV-2 protease inhibitors.
Netw Model Anal Health Inform Bioinform. 2021;10(1):51. doi: 10.1007/s13721-021-00326-2. Epub 2021 Jul 24.
3
4
Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease.
J Chem Inf Model. 2020 Dec 28;60(12):5771-5780. doi: 10.1021/acs.jcim.0c00491. Epub 2020 Jun 28.
5
Exploiting cheminformatic and machine learning to navigate the available chemical space of potential small molecule inhibitors of SARS-CoV-2.
Comput Struct Biotechnol J. 2021;19:424-438. doi: 10.1016/j.csbj.2020.12.028. Epub 2020 Dec 29.
7
Cell-Based High-Throughput Screening Protocol for Discovering Antiviral Inhibitors Against SARS-COV-2 Main Protease (3CLpro).
Mol Biotechnol. 2021 Mar;63(3):240-248. doi: 10.1007/s12033-021-00299-7. Epub 2021 Jan 19.
8
Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target.
J Biomol Struct Dyn. 2021 Jun;39(9):3428-3434. doi: 10.1080/07391102.2020.1763202. Epub 2020 May 13.
10
Deep learning model for virtual screening of novel 3C-like protease enzyme inhibitors against SARS coronavirus diseases.
Comput Biol Med. 2021 May;132:104317. doi: 10.1016/j.compbiomed.2021.104317. Epub 2021 Mar 6.

引用本文的文献

2
Herbal Medicine Usage During the COVID-19 Pandemic in Indonesia: Trends and Determinants.
ScientificWorldJournal. 2025 May 14;2025:1639500. doi: 10.1155/tswj/1639500. eCollection 2025.
3
Developing a SARS-CoV-2 main protease binding prediction random forest model for drug repurposing for COVID-19 treatment.
Exp Biol Med (Maywood). 2023 Nov;248(21):1927-1936. doi: 10.1177/15353702231209413. Epub 2023 Nov 24.
4
The Experimentalist's Guide to Machine Learning for Small Molecule Design.
ACS Appl Bio Mater. 2024 Feb 19;7(2):657-684. doi: 10.1021/acsabm.3c00054. Epub 2023 Aug 3.
5
Herbal Remedies, Nutraceuticals, and Dietary Supplements for COVID-19 Management: An Update.
Clin Complement Med Pharmacol. 2022 Mar;2(1):100021. doi: 10.1016/j.ccmp.2022.100021. Epub 2022 Feb 5.
6
Generating novel molecule for target protein (SARS-CoV-2) using drug-target interaction based on graph neural network.
Netw Model Anal Health Inform Bioinform. 2022;11(1):6. doi: 10.1007/s13721-021-00351-1. Epub 2021 Dec 18.

本文引用的文献

1
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
4
modeling for quick prediction of inhibitory activity against 3CL enzyme in SARS CoV diseases.
J Biomol Struct Dyn. 2022 Feb;40(3):1010-1036. doi: 10.1080/07391102.2020.1821779. Epub 2020 Sep 21.
5
The unequal scramble for coronavirus vaccines - by the numbers.
Nature. 2020 Aug;584(7822):506-507. doi: 10.1038/d41586-020-02450-x.
6
identification of potential inhibitors from against main protease and spike glycoprotein of SARS CoV-2.
J Biomol Struct Dyn. 2021 Aug;39(13):4618-4632. doi: 10.1080/07391102.2020.1779129. Epub 2020 Jun 22.
8
An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study.
J Biomol Struct Dyn. 2021 Jun;39(9):3347-3357. doi: 10.1080/07391102.2020.1763201. Epub 2020 May 13.
9
A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2.
J Biomol Struct Dyn. 2021 Jun;39(9):3213-3224. doi: 10.1080/07391102.2020.1761883. Epub 2020 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验