Wagaskar Vinayak G, Levy Micah, Ratnani Parita, Moody Kate, Garcia Mariely, Pedraza Adriana M, Parekh Sneha, Pandav Krunal, Shukla Bhavya, Prasad Sonya, Sobotka Stanislaw, Haines Kenneth, Punnen Sanoj, Wiklund Peter, Tewari Ash
Department of Urology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.
Department of Urology, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogota, Colombia.
Eur Urol Open Sci. 2021 Apr 19;28:9-16. doi: 10.1016/j.euros.2021.03.008. eCollection 2021 Jun.
Multiparametric magnetic resonance imaging (MRI) is increasingly used to diagnose prostate cancer (PCa). It is not yet established whether all men with negative MRI (Prostate Imaging-Reporting and Data System version 2 score <3) should undergo prostate biopsy or not.
To develop and validate a prediction model that uses clinical parameters to reduce unnecessary prostate biopsies by predicting PCa and clinically significant PCa (csPCa) for men with negative MRI findings who are at risk of harboring PCa.
This was a retrospective analysis of 200 men with negative MRI at risk of PCa who underwent prostate biopsy (2014-2020) with prostate-specific antigen (PSA) >4 ng/ml, 4Kscore of >7%, PSA density ≥0.15 ng/ml/cm, and/or suspicious digital rectal examination. The validation cohort included 182 men from another centre (University of Miami) with negative MRI who underwent systematic prostate biopsy with the same criteria.
csPCa was defined as Gleason grade group ≥2 on biopsy. Multivariable logistic regression analysis was performed using coefficients of logit function for predicting PCa and csPCa. Nomogram validation was performed by calculating the area under receiver operating characteristic curves (AUC) and comparing nomogram-predicted probabilities with actual rates of PCa and csPCa.
Of 200 men in the development cohort, 18% showed PCa and 8% showed csPCa on biopsy. Of 182 men in the validation cohort, 21% showed PCa and 6% showed csPCa on biopsy. PSA density, 4Kscore, and family history of PCa were significant predictors for PCa and csPCa. The AUC was 0.80 and 0.87 for prediction of PCa and csPCa, respectively. There was agreement between predicted and actual rates of PCa in the validation cohort. Using the prediction model at threshold of 40, 47% of benign biopsies and 15% of indolent PCa cases diagnosed could be avoided, while missing 10% of csPCa cases. The small sample size and number of events are limitations of the study.
Our prediction model can reduce the number of prostate biopsies among men with negative MRI without compromising the detection of csPCa.
We developed a tool for selection of men with negative MRI (magnetic resonance imaging) findings for prostate cancer who should undergo prostate biopsy. This risk prediction tool safely reduces the number of men who need to undergo the procedure.
多参数磁共振成像(MRI)越来越多地用于诊断前列腺癌(PCa)。目前尚未确定所有MRI结果为阴性(前列腺影像报告和数据系统第2版评分<3)的男性是否都应接受前列腺活检。
开发并验证一种预测模型,该模型使用临床参数,通过预测有PCa风险且MRI结果为阴性的男性患PCa和临床显著前列腺癌(csPCa)的情况,来减少不必要的前列腺活检。
设计、设置和参与者:这是一项对200名有PCa风险且MRI结果为阴性的男性进行的回顾性分析,这些男性在2014 - 2020年期间接受了前列腺活检,其前列腺特异性抗原(PSA)>4 ng/ml、4K评分>7%、PSA密度≥0.15 ng/ml/cm,和/或直肠指检可疑。验证队列包括来自另一个中心(迈阿密大学)的182名MRI结果为阴性的男性,他们按照相同标准接受了系统性前列腺活检。
csPCa定义为活检时Gleason分级组≥2。使用logit函数系数进行多变量逻辑回归分析,以预测PCa和csPCa。通过计算受试者工作特征曲线(AUC)下面积并将列线图预测概率与PCa和csPCa的实际发生率进行比较,来进行列线图验证。
在开发队列的200名男性中,18%在活检时显示患有PCa,8%显示患有csPCa。在验证队列的182名男性中,21%在活检时显示患有PCa,6%显示患有csPCa。PSA密度、4K评分和PCa家族史是PCa和csPCa的显著预测因素。预测PCa和csPCa的AUC分别为0.80和0.87。在验证队列中,PCa的预测发生率与实际发生率之间存在一致性。在阈值为40时使用该预测模型,可以避免47%的良性活检和15%已诊断的惰性PCa病例,同时漏诊10%的csPCa病例。小样本量和事件数量是本研究的局限性。
我们的预测模型可以减少MRI结果为阴性的男性的前列腺活检数量,同时不影响csPCa的检测。
我们开发了一种工具,用于选择有MRI(磁共振成像)结果为阴性的前列腺癌男性患者进行前列腺活检。这种风险预测工具安全地减少了需要接受该检查的男性人数。