Suppr超能文献

用于预测任何前列腺癌和临床显著前列腺癌的西奈山活检前风险计算器:风险预测工具的开发以及通过先进神经网络、前列腺磁共振成像结果数据库和欧洲前列腺癌风险计算器筛查随机研究进行验证

The Mount Sinai Prebiopsy Risk Calculator for Predicting any Prostate Cancer and Clinically Significant Prostate Cancer: Development of a Risk Predictive Tool and Validation with Advanced Neural Networking, Prostate Magnetic Resonance Imaging Outcome Database, and European Randomized Study of Screening for Prostate Cancer Risk Calculator.

作者信息

Parekh Sneha, Ratnani Parita, Falagario Ugo, Lundon Dara, Kewlani Deepshikha, Nasri Jordan, Dovey Zach, Stroumbakis Dimitrios, Ranti Daniel, Grauer Ralph, Sobotka Stanislaw, Pedraza Adriana, Wagaskar Vinayak, Mistry Lajja, Jambor Ivan, Lantz Anna, Ettala Otto, Stabile Armando, Taimen Pekka, Aronen Hannu J, Knaapila Juha, Perez Ileana Montoya, Gandaglia Giorgio, Martini Alberto, Picker Wolfgang, Haug Erik, Cormio Luigi, Nordström Tobias, Briganti Alberto, Boström Peter J, Carrieri Giuseppe, Haines Kenneth, Gorin Michael A, Wiklund Peter, Menon Mani, Tewari Ash

机构信息

Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy.

出版信息

Eur Urol Open Sci. 2022 May 20;41:45-54. doi: 10.1016/j.euros.2022.04.017. eCollection 2022 Jul.

Abstract

BACKGROUND

The European Association of Urology guidelines recommend the use of imaging, biomarkers, and risk calculators in men at risk of prostate cancer. Risk predictive calculators that combine multiparametric magnetic resonance imaging with prebiopsy variables aid as an individualized decision-making tool for patients at risk of prostate cancer, and advanced neural networking increases reliability of these tools.

OBJECTIVE

To develop a comprehensive risk predictive online web-based tool using magnetic resonance imaging (MRI) and clinical data, to predict the risk of any prostate cancer (PCa) and clinically significant PCa (csPCa) applicable to biopsy-naïve men, men with a prior negative biopsy, men with prior positive low-grade cancer, and men with negative MRI.

DESIGN SETTING AND PARTICIPANTS

Institutional review board-approved prospective data of 1902 men undergoing biopsy from October 2013 to September 2021 at Mount Sinai were collected.

OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS

Univariable and multivariable analyses were used to evaluate clinical variables such as age, race, digital rectal examination, family history, prostate-specific antigen (PSA), biopsy status, Prostate Imaging Reporting and Data System score, and prostate volume, which emerged as predictors for any PCa and csPCa. Binary logistic regression was performed to study the probability. Validation was performed with advanced neural networking (ANN), multi-institutional European cohort (Prostate MRI Outcome Database [PROMOD]), and European Randomized Study of Screening for Prostate Cancer Risk Calculator (ERSPC RC) 3/4.

RESULTS AND LIMITATIONS

Overall, 2363 biopsies had complete clinical information, with 57.98% any cancer and 31.40% csPCa. The prediction model was significantly associated with both any PCa and csPCa having an area under the curve (AUC) of 81.9% including clinical data. The AUC for external validation was calculated in PROMOD, ERSPC RC, and ANN for any PCa (0.82 vs 0.70 vs 0.90) and csPCa (0.82 vs 0.78 vs 0.92), respectively. This study is limited by its retrospective design and overestimation of csPCa in the PROMOD cohort.

CONCLUSIONS

The Mount Sinai Prebiopsy Risk Calculator combines PSA, imaging and clinical data to predict the risk of any PCa and csPCa for all patient settings. With accurate validation results in a large European cohort, ERSPC RC, and ANN, it exhibits its efficiency and applicability in a more generalized population. This calculator is available online in the form of a free web-based tool that can aid clinicians in better patients counseling and treatment decision-making.

PATIENT SUMMARY

We developed the Mount Sinai Prebiopsy Risk Calculator (MSP-RC) to assess the likelihood of any prostate cancer and clinically significant disease based on a combination of clinical and imaging characteristics. MSP-RC is applicable to all patient settings and accessible online.

摘要

背景

欧洲泌尿外科学会指南建议,对有前列腺癌风险的男性使用影像学检查、生物标志物和风险计算器。将多参数磁共振成像与活检前变量相结合的风险预测计算器,有助于为有前列腺癌风险的患者提供个性化决策工具,而先进的神经网络提高了这些工具的可靠性。

目的

开发一种基于网络的综合风险预测在线工具,利用磁共振成像(MRI)和临床数据,预测适用于未经活检的男性、既往活检阴性的男性、既往低级别癌症阳性的男性以及MRI阴性的男性发生任何前列腺癌(PCa)和临床意义重大的前列腺癌(csPCa)的风险。

设计、设置和参与者:收集了2013年10月至2021年9月在西奈山接受活检的1902名男性的机构审查委员会批准的前瞻性数据。

结果测量和统计分析

采用单变量和多变量分析来评估临床变量,如年龄、种族、直肠指检、家族史、前列腺特异性抗原(PSA)、活检状态、前列腺影像报告和数据系统评分以及前列腺体积,这些变量被确定为任何PCa和csPCa的预测因素。进行二元逻辑回归以研究概率。使用先进的神经网络(ANN)、多机构欧洲队列(前列腺MRI结果数据库[PROMOD])和欧洲前列腺癌筛查随机研究风险计算器(ERSPC RC)3/4进行验证。

结果和局限性

总体而言,2363次活检有完整的临床信息,其中57.98%为任何癌症,31.40%为csPCa。预测模型与任何PCa和csPCa均显著相关,包括临床数据在内的曲线下面积(AUC)为81.9%。在PROMOD、ERSPC RC和ANN中分别计算了外部验证的AUC,用于任何PCa(0.82对0.70对0.90)和csPCa(0.82对0.78对0.92)。本研究受其回顾性设计的限制,且PROMOD队列中对csPCa的估计过高。

结论

西奈山活检前风险计算器结合PSA、影像学和临床数据,预测所有患者情况下发生任何PCa和csPCa的风险。在大型欧洲队列、ERSPC RC和ANN中获得了准确的验证结果,表明其在更广泛人群中的有效性和适用性。该计算器以免费网络工具的形式在线提供,可帮助临床医生更好地为患者提供咨询和进行治疗决策。

患者总结

我们开发了西奈山活检前风险计算器(MSP-RC),以根据临床和影像学特征的组合评估发生任何前列腺癌和临床意义重大疾病的可能性。MSP-RC适用于所有患者情况,可在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ec/9257660/50afe1648228/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验