Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan.
Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
J Biol Chem. 2021 Sep;297(3):101032. doi: 10.1016/j.jbc.2021.101032. Epub 2021 Jul 30.
The progression of cancer involves not only the gradual evolution of cells by mutations in DNA but also alterations in the gene expression induced by those mutations and input from the surrounding microenvironment. Such alterations contribute to cancer cells' abilities to reprogram metabolic pathways and undergo epithelial-to-mesenchymal transition (EMT), which facilitate the survival of cancer cells and their metastasis to other organs. Recently, BTB and CNC homology 1 (BACH1), a heme-regulated transcription factor that represses genes involved in iron and heme metabolism in normal cells, was shown to shape the metabolism and metastatic potential of cancer cells. The growing list of BACH1 target genes in cancer cells reveals that BACH1 promotes metastasis by regulating various sets of genes beyond iron metabolism. BACH1 represses the expression of genes that mediate cell-cell adhesion and oxidative phosphorylation but activates the expression of genes required for glycolysis, cell motility, and matrix protein degradation. Furthermore, BACH1 represses FOXA1 gene encoding an activator of epithelial genes and activates SNAI2 encoding a repressor of epithelial genes, forming a feedforward loop of EMT. By synthesizing these observations, we propose a "two-faced BACH1 model", which accounts for the dynamic switching between metastasis and stress resistance along with cancer progression. We discuss here the possibility that BACH1-mediated promotion of cancer also brings increased sensitivity to iron-dependent cell death (ferroptosis) through crosstalk of BACH1 target genes, imposing programmed vulnerability upon cancer cells. We also discuss the future directions of this field, including the dynamics and plasticity of EMT.
癌症的进展不仅涉及 DNA 突变导致的细胞逐渐进化,还涉及这些突变引起的基因表达改变以及周围微环境的输入。这些改变有助于癌细胞重新编程代谢途径并经历上皮-间充质转化(EMT),这促进了癌细胞的存活及其向其他器官的转移。最近,BTB 和 CNC 同源 1(BACH1),一种血红素调节转录因子,在正常细胞中抑制与铁和血红素代谢相关的基因,被证明可以塑造癌细胞的代谢和转移潜力。癌细胞中越来越多的 BACH1 靶基因表明,BACH1 通过调节铁代谢以外的各种基因集促进转移。BACH1 抑制介导细胞间黏附的基因和氧化磷酸化的表达,但激活参与糖酵解、细胞迁移和基质蛋白降解的基因的表达。此外,BACH1 抑制 FOXA1 基因的表达,FOXA1 基因编码上皮基因的激活剂,激活 SNAI2 基因的表达,SNAI2 基因编码上皮基因的抑制剂,形成 EMT 的正反馈环。通过综合这些观察结果,我们提出了“两面 BACH1 模型”,该模型解释了癌症进展过程中转移和抗应激之间的动态切换。我们在这里讨论了 BACH1 介导的促进癌症也可能通过 BACH1 靶基因的串扰带来对铁依赖性细胞死亡(铁死亡)的增加敏感性,从而使癌细胞具有程序性脆弱性的可能性。我们还讨论了该领域的未来方向,包括 EMT 的动态性和可塑性。
J Biochem. 2023-7-31
J Cancer Res Clin Oncol. 2023-1
Biochim Biophys Acta Mol Basis Dis. 2022-12-1
Cells. 2021-3-12