Departamento de Física y Matemática Aplicada, Universidad de Navarra, Pamplona 31080, Spain.
Max-Planck Institute, Gottingen 37077, Germany.
Chaos. 2021 Jul;31(7):073144. doi: 10.1063/5.0053651.
In this paper, we study the propagation of the cardiac action potential in a one-dimensional fiber, where cells are electrically coupled through gap junctions (GJs). We consider gap junctional gate dynamics that depend on the intercellular potential. We find that different GJs in the tissue can end up in two different states: a low conducting state and a high conducting state. We first present evidence of the dynamical multistability that occurs by setting specific parameters of the GJ dynamics. Subsequently, we explain how the multistability is a direct consequence of the GJ stability problem by reducing the dynamical system's dimensions. The conductance dispersion usually occurs on a large time scale, i.e., thousands of heartbeats. The full cardiac model simulations are computationally demanding, and we derive a simplified model that allows for a reduction in the computational cost of four orders of magnitude. This simplified model reproduces nearly quantitatively the results provided by the original full model. We explain the discrepancies between the two models due to the simplified model's lack of spatial correlations. This simplified model provides a valuable tool to explore cardiac dynamics over very long time scales. That is highly relevant in studying diseases that develop on a large time scale compared to the basic heartbeat. As in the brain, plasticity and tissue remodeling are crucial parameters in determining the action potential wave propagation's stability.
本文研究了一维纤维中心脏动作电位的传播,其中细胞通过缝隙连接(GJ)进行电耦合。我们考虑了依赖于细胞间电势的缝隙连接门控动力学。我们发现组织中的不同 GJ 最终可能处于两种不同的状态:低传导状态和高传导状态。我们首先通过设置 GJ 动力学的特定参数来证明发生的动态多稳定性。随后,我们通过降低动力系统的维度来解释多稳定性是 GJ 稳定性问题的直接结果。电导弥散通常发生在较大的时间尺度上,即数千个心跳。完整的心脏模型模拟计算成本很高,我们推导出一个简化模型,可将计算成本降低四个数量级。该简化模型几乎定量地再现了原始全模型提供的结果。我们解释了两个模型之间的差异,原因是简化模型缺乏空间相关性。该简化模型提供了一个有价值的工具,可在很长的时间尺度上探索心脏动力学。与基本心跳相比,在研究与大时间尺度相关的疾病方面具有重要意义。与大脑一样,可塑性和组织重塑是决定动作电位波传播稳定性的关键参数。