de Los Reyes Elena, Acosta Victor, Carreras Pilar, Pinto Alberto, González Itziar
Group of Ultrasonic Resonators RESULT, Department of Sensors and Ultrasonic Systems, Institute of Physical Technologies and Information (ITEFI), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28006, Spain.
Fundación Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
J Acoust Soc Am. 2021 Jul;150(1):646. doi: 10.1121/10.0005629.
Polymeric separators have been developed since 2010 to produce acoustophoretic separation of particles or cells in suspension with high efficiency. They rely on three-dimensional (3D) resonances of their whole structure actuated by ultrasounds. In this paper, a numerical 3D analysis is presented and validated as the only tool for optimization of these polymeric chips to perform efficient separation applications. In contrast to conventional acoustophoretic techniques based on the establishment of standing waves in the liquid phase of the channel (requiring rigid chip materials, such as silicon or glass), whole-structure resonances of the chip allow the use of materials that are acoustically soft and of low acoustic impedance, which is close to that of the liquid samples hosted. The resonance requirement is not restricted to the liquid phase in the polymeric chips, but it extends to the 3D whole structure, allowing any material. It provides significant advantages in the design and manufacture of our chips, allowing the use of low-cost materials and cheap manufacturing processes and even printing of devices. The extraordinary complexity of their multiple resonances requires theoretical approaches to optimize their acoustophoretic performance. Hence, the importance of 3D numerical analyses, which are capable of predicting the acoustic behavior of these chips, is to perform acoustophretica separation in suspensions.
自2010年以来,人们一直在研发聚合物分离器,以高效地对悬浮液中的颗粒或细胞进行声泳分离。它们依靠超声波驱动其整个结构的三维(3D)共振。本文提出了一种三维数值分析方法,并将其验证为优化这些聚合物芯片以实现高效分离应用的唯一工具。与基于在通道液相中建立驻波的传统声泳技术(需要硅或玻璃等刚性芯片材料)不同,芯片的全结构共振允许使用声学上柔软且声阻抗低的材料,这种材料接近所容纳液体样品的声阻抗。共振要求不仅限于聚合物芯片中的液相,还扩展到三维整体结构,允许使用任何材料。这在我们芯片的设计和制造中提供了显著优势,允许使用低成本材料和廉价制造工艺,甚至可以进行设备打印。其多重共振的非凡复杂性需要理论方法来优化其声泳性能。因此,能够预测这些芯片声学行为的三维数值分析对于在悬浮液中进行声泳分离至关重要。