Suppr超能文献

混合材料声射流装置操控微颗粒的数值与实验分析。

Numerical and experimental analysis of a hybrid material acoustophoretic device for manipulation of microparticles.

机构信息

Department of Mechanical Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.

Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.

出版信息

Sci Rep. 2021 Nov 11;11(1):22048. doi: 10.1038/s41598-021-01459-0.

Abstract

Acoustophoretic microfluidic devices have been developed for accurate, label-free, contactless, and non-invasive manipulation of bioparticles in different biofluids. However, their widespread application is limited due to the need for the use of high quality microchannels made of materials with high specific acoustic impedances relative to the fluid (e.g., silicon or glass with small damping coefficient), manufactured by complex and expensive microfabrication processes. Soft polymers with a lower fabrication cost have been introduced to address the challenges of silicon- or glass-based acoustophoretic microfluidic systems. However, due to their small acoustic impedance, their efficacy for particle manipulation is shown to be limited. Here, we developed a new acoustophoretic microfluid system fabricated by a hybrid sound-hard (aluminum) and sound-soft (polydimethylsiloxane polymer) material. The performance of this hybrid device for manipulation of bead particles and cells was compared to the acoustophoretic devices made of acoustically hard materials. The results show that particles and cells in the hybrid material microchannel travel to a nodal plane with a much smaller energy density than conventional acoustic-hard devices but greater than polymeric microfluidic chips. Against conventional acoustic-hard chips, the nodal line in the hybrid microchannel could be easily tuned to be placed in an off-center position by changing the frequency, effective for particle separation from a host fluid in parallel flow stream models. It is also shown that the hybrid acoustophoretic device deals with smaller temperature rise which is safer for the actuation of bioparticles. This new device eliminates the limitations of each sound-soft and sound-hard materials in terms of cost, adjusting the position of nodal plane, temperature rise, fragility, production cost and disposability, making it desirable for developing the next generation of economically viable acoustophoretic products for ultrasound particle manipulation in bioengineering applications.

摘要

声流微流控装置已被开发出来,用于在不同的生物流体中精确、无标记、非接触和非侵入式地操控生物颗粒。然而,由于需要使用具有高相对流体声阻抗的材料(例如硅或玻璃,其阻尼系数较小)制造高质量微通道,并且制造过程复杂且昂贵,因此其广泛应用受到限制。已经引入了具有较低制造成本的软聚合物来解决基于硅或玻璃的声流微流控系统的挑战。然而,由于其声阻抗较小,其用于颗粒操控的效果被证明是有限的。在这里,我们开发了一种由混合硬声(铝)和软声(聚二甲基硅氧烷聚合物)材料制成的新型声流微流系统。将该混合器件用于操控珠粒和细胞的性能与由硬声材料制成的声流器件进行了比较。结果表明,与传统的硬声器件相比,混合材料微通道中的颗粒和细胞移动到节点平面的能量密度要小得多,但比聚合物微流控芯片大。与传统的硬声芯片相比,通过改变频率,可以很容易地将混合微通道中的节点线调至偏心位置,这对于在平行流模型中从主体流体中分离颗粒非常有效。还表明,混合声流装置处理的温升较小,这对于生物颗粒的致动更安全。该新型装置消除了每种软声和硬声材料在成本、节点平面位置调整、温升、易碎性、制造成本和可处置性方面的限制,使其成为开发下一代经济可行的声控超声颗粒操控产品的理想选择,适用于生物工程应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4df3/8586004/6c07c07b8c35/41598_2021_1459_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验