Suppr超能文献

CRTH2 前列腺素 D 受体识别脂质的分子基础。

Molecular basis for lipid recognition by the prostaglandin D receptor CRTH2.

机构信息

Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261.

Bioinformatics Institute, Agency for Science, Technology and Research, Matrix 138671, Singapore.

出版信息

Proc Natl Acad Sci U S A. 2021 Aug 10;118(32). doi: 10.1073/pnas.2102813118.

Abstract

Prostaglandin D (PGD) signals through the G protein-coupled receptor (GPCR) CRTH2 to mediate various inflammatory responses. CRTH2 is the only member of the prostanoid receptor family that is phylogenetically distant from others, implying a nonconserved mechanism of lipid action on CRTH2. Here, we report a crystal structure of human CRTH2 bound to a PGD derivative, 15R-methyl-PGD (15mPGD), by serial femtosecond crystallography. The structure revealed a "polar group in"-binding mode of 15mPGD contrasting the "polar group out"-binding mode of PGE in its receptor EP3. Structural comparison analysis suggested that these two lipid-binding modes, associated with distinct charge distributions of ligand-binding pockets, may apply to other lipid GPCRs. Molecular dynamics simulations together with mutagenesis studies also identified charged residues at the ligand entry port that function to capture lipid ligands of CRTH2 from the lipid bilayer. Together, our studies suggest critical roles of charge environment in lipid recognition by GPCRs.

摘要

前列腺素 D(PGD)通过 G 蛋白偶联受体(GPCR)CRTH2 发出信号,介导各种炎症反应。CRTH2 是前列腺素受体家族中唯一与其他成员在系统发育上相距甚远的成员,这意味着其脂质作用机制没有保守。在这里,我们通过连续飞秒晶体学报告了人 CRTH2 与 PGD 衍生物 15R-甲基-PGD(15mPGD)结合的晶体结构。该结构揭示了 15mPGD 的“极性基团内”结合模式,与 EP3 受体中 PGE 的“极性基团外”结合模式形成对比。结构比较分析表明,这两种脂质结合模式与配体结合口袋中不同的电荷分布相关,可能适用于其他脂质 GPCR。分子动力学模拟和突变研究也鉴定了配体进入口处的带电残基,这些残基可从脂质双层中捕获 CRTH2 的脂质配体。总之,我们的研究表明,电荷环境在 GPCR 对脂质的识别中起着关键作用。

相似文献

1
Molecular basis for lipid recognition by the prostaglandin D receptor CRTH2.
Proc Natl Acad Sci U S A. 2021 Aug 10;118(32). doi: 10.1073/pnas.2102813118.
2
Structures of the Human PGD Receptor CRTH2 Reveal Novel Mechanisms for Ligand Recognition.
Mol Cell. 2018 Oct 4;72(1):48-59.e4. doi: 10.1016/j.molcel.2018.08.009. Epub 2018 Sep 13.
4
Differential regulation of the signaling and trafficking of the two prostaglandin D2 receptors, prostanoid DP receptor and CRTH2.
Eur J Pharmacol. 2007 Feb 28;557(2-3):115-23. doi: 10.1016/j.ejphar.2006.11.058. Epub 2006 Dec 5.
5
Prostaglandin D enhances lipid accumulation through suppression of lipolysis via DP2 (CRTH2) receptors in adipocytes.
Biochem Biophys Res Commun. 2017 Aug 19;490(2):393-399. doi: 10.1016/j.bbrc.2017.06.053. Epub 2017 Jun 13.
6
Human DP and EP2 prostanoid receptors take on distinct forms depending on the diverse binding of different ligands.
FEBS J. 2016 Nov;283(21):3931-3940. doi: 10.1111/febs.13899. Epub 2016 Sep 29.
9
Identification of determinants of ligand binding affinity and selectivity in the prostaglandin D2 receptor CRTH2.
J Biol Chem. 2005 Sep 16;280(37):32442-51. doi: 10.1074/jbc.M502563200. Epub 2005 Jul 19.
10
Expression and molecular pharmacology of the mouse CRTH2 receptor.
J Pharmacol Exp Ther. 2003 Aug;306(2):463-70. doi: 10.1124/jpet.103.050955. Epub 2003 Apr 29.

引用本文的文献

1
Molecular basis of lipid and ligand regulation of prostaglandin receptor DP2.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2403304121. doi: 10.1073/pnas.2403304121. Epub 2024 Dec 12.
2
G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction.
Int J Mol Sci. 2024 Jun 22;25(13):6876. doi: 10.3390/ijms25136876.
5
Structural basis for the ligand recognition and signaling of free fatty acid receptors.
Sci Adv. 2024 Jan 12;10(2):eadj2384. doi: 10.1126/sciadv.adj2384. Epub 2024 Jan 10.
6
Pro-phagocytic function and structural basis of GPR84 signaling.
Nat Commun. 2023 Sep 14;14(1):5706. doi: 10.1038/s41467-023-41201-0.
7
Pro-phagocytic function and structural basis of GPR84 signaling.
Res Sq. 2023 Feb 15:rs.3.rs-2535247. doi: 10.21203/rs.3.rs-2535247/v1.
8
Serial femtosecond crystallography.
Nat Rev Methods Primers. 2022 Aug 4;2. doi: 10.1038/s43586-022-00141-7.

本文引用的文献

2
Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein.
Structure. 2021 Mar 4;29(3):252-260.e6. doi: 10.1016/j.str.2020.11.007. Epub 2020 Dec 1.
3
Structural basis of ligand binding modes at the human formyl peptide receptor 2.
Nat Commun. 2020 Mar 5;11(1):1208. doi: 10.1038/s41467-020-15009-1.
5
Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors.
Nat Commun. 2019 Dec 6;10(1):5573. doi: 10.1038/s41467-019-13348-2.
6
A Phase 2a Study of DP Antagonist GB001 for Asthma.
J Allergy Clin Immunol Pract. 2020 Apr;8(4):1275-1283.e1. doi: 10.1016/j.jaip.2019.11.016. Epub 2019 Nov 26.
7
New treatments for asthma: From the pathogenic role of prostaglandin D to the therapeutic effects of fevipiprant.
Pharmacol Res. 2020 May;155:104490. doi: 10.1016/j.phrs.2019.104490. Epub 2019 Nov 1.
9
Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs.
Sci Adv. 2019 Oct 9;5(10):eaax2518. doi: 10.1126/sciadv.aax2518. eCollection 2019 Oct.
10
The interaction between methionine and two aromatic amino acids is an abundant and multifunctional motif in proteins.
Arch Biochem Biophys. 2019 Sep 15;672:108053. doi: 10.1016/j.abb.2019.07.018. Epub 2019 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验