Suppr超能文献

G 蛋白偶联受体-配体构象和功能分类预测。

G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction.

机构信息

Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.

出版信息

Int J Mol Sci. 2024 Jun 22;25(13):6876. doi: 10.3390/ijms25136876.

Abstract

G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand-receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives.

摘要

G 蛋白偶联受体(GPCR)跨膜蛋白家族成员在生理学中发挥着重要作用。许多药物针对 GPCR,许多药物发现计划利用针对 GPCR 靶点的虚拟筛选(VS)。提高预测与 GPCR 功能结合并激活或抑制其功能的新分子的准确性将加速此类药物发现计划。这项工作解决了两个重要的研究问题。首先,配体相互作用指纹是否比结合位点选择的自动方法为经典对接提供了实质性优势?其次,是否可以使用随机森林分类器根据配体相互作用指纹预测潜在筛选候选物的功能状态?配体相互作用指纹在采样准确构象方面提供了适度的优势,但在评分后的最终顶级构象集方面没有实质性优势,因此,在生成用于训练和测试随机森林分类器的配体-受体复合物时未使用配体相互作用指纹。将激动剂、拮抗剂和反向激动剂视为活性,将所有其他配体视为非活性的二进制分类器在 GPR31 和 TAAR2 候选配体的外部测试集中进行配体功能预测时非常有效,预测活性集内的实际活性物的命中率为 82.6%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8f7/11241240/8e1bf67a2efb/ijms-25-06876-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验