Suppr超能文献

高动能离子迁移谱仪中质子结合水团簇的团簇动力学模拟

Simulation of Cluster Dynamics of Proton-Bound Water Clusters in a High Kinetic Energy Ion-Mobility Spectrometer.

作者信息

Erdogdu Duygu, Wißdorf Walter, Allers Maria, Kirk Ansgar T, Kersten Hendrik, Zimmermann Stefan, Benter Thorsten

机构信息

Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Straße 20, 42119 Wuppertal, Germany.

Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, Appelstraße 9a, 30167 Hannover, Germany.

出版信息

J Am Soc Mass Spectrom. 2021 Sep 1;32(9):2436-2450. doi: 10.1021/jasms.1c00140. Epub 2021 Aug 3.

Abstract

Ions are separated in ion mobility spectrometry (IMS) by their characteristic motion through a gas-filled drift tube with a static electric field present. Chemical dynamics, such as clustering and declustering of chemically reactive systems, and physical parameters, as, for example, the electric field strength or background gas temperature, impact on the observed ion mobility. In high kinetic energy IMS (HiKE-IMS), the reduced electric field strength is up to 120 Td in both the reaction region and drift region of the instrument. The ion generation in a corona discharge driven chemical ionization source leads generally to formation of proton-bound water clusters. However, the reduced electric field strength and therefore the effective ion temperature has a significant influence on the chemical equilibria of this reaction system. In order to characterize the effects occurring in IMS systems in general, numerical simulations can support and potentially explain experimental observations. The comparison of the simulation of a well characterized chemical reaction system (i.e., the proton-bound water cluster system) with experimental results allows us to validate the numerical model applied in this work. Numerical simulations of the proton-bound water cluster system were performed with the custom particle-based ion dynamics simulation framework (IDSimF). The ion-transport calculation in the model is based on a Verlet integration of the equations of motion and uses a customized Barnes-Hut method to calculate space charge interactions. The chemical kinetics is modeled stochastically with a Monte Carlo method. The experimental and simulated drift spectra are in good qualitative and quantitative agreement, and experimentally observed individual transitions of cluster ions are clearly reproduced and identified by the numerical model.

摘要

在离子迁移谱(IMS)中,离子通过充满气体的漂移管在存在静电场的情况下进行特征性运动而被分离。化学动力学,如化学反应体系的聚集和解聚,以及物理参数,例如电场强度或背景气体温度,都会影响观察到的离子迁移率。在高动能离子迁移谱(HiKE-IMS)中,仪器的反应区和漂移区的折合电场强度高达120 Td。在电晕放电驱动的化学电离源中产生离子通常会导致质子结合水簇的形成。然而,折合电场强度以及因此有效离子温度对该反应体系的化学平衡有显著影响。为了总体表征离子迁移谱系统中发生的效应,数值模拟可以支持并有可能解释实验观察结果。将一个特征明确的化学反应体系(即质子结合水簇体系)的模拟结果与实验结果进行比较,使我们能够验证本工作中应用的数值模型。使用定制的基于粒子的离子动力学模拟框架(IDSimF)对质子结合水簇体系进行了数值模拟。模型中的离子传输计算基于运动方程的Verlet积分,并使用定制的Barnes-Hut方法计算空间电荷相互作用。化学动力学用蒙特卡罗方法进行随机建模。实验和模拟的漂移谱在定性和定量上都有很好的一致性,并且数值模型清楚地再现并识别了实验观察到的簇离子的各个跃迁。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验