Haack Alexander, Schaefer Christoph, Zimmermann Stefan
Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, 30167 Hannover, Germany.
Anal Chem. 2024 Jul 15;96(30):12433-43. doi: 10.1021/acs.analchem.4c02010.
Ion mobility spectrometry (IMS) is a widely used gas-phase separation technique, particularly when coupled with mass spectrometry (MS). Modern IMS instruments often apply elevated reduced field strengths for improved ion separation and ion focusing. These alter the collision dynamics and further drive ion reaction processes that can change the analyte's structure. As a result, the measured arrival time distribution (ATD) can change with the applied reduced field strengths. In this work, we systematically study how the ion collision dynamics and the ion reaction dynamics, as a function of the reduced field strength, can alter the ATD. To this end, we investigate 2,6-di--butylpyridine, methanol, and ethyl acetate using a home-built drift tube IMS coupled to a home-built MS and extensive first-principles Monte Carlo modeling. We show how elevated reduced field strengths can actually lower resolving power through increased ion diffusion and how the field dependency of the ion mobility can introduce uncertainties to collision cross sections (CCS) calculated from the measured mobilities. On top of the collision dynamics, we show how chemical transformation processes that alter the analyte's CCS, e.g., dynamic clustering or fragmentation, can lead to broadened, shifted, or non-Gaussian ATDs and how sensitive these processes are to the applied field strengths. We highlight how first-principles ion dynamics simulations can help to understand and even harness the mentioned effects.
离子迁移谱(IMS)是一种广泛应用的气相分离技术,尤其是与质谱(MS)联用时。现代IMS仪器通常采用升高的折合场强来改善离子分离和离子聚焦。这些会改变碰撞动力学,并进一步驱动离子反应过程,从而可能改变分析物的结构。结果,测得的到达时间分布(ATD)会随所施加的折合场强而变化。在这项工作中,我们系统地研究了作为折合场强函数的离子碰撞动力学和离子反应动力学如何改变ATD。为此,我们使用一台自制的漂移管IMS与一台自制的MS以及广泛的第一性原理蒙特卡罗建模,对2,6 - 二 - 丁基吡啶、甲醇和乙酸乙酯进行了研究。我们展示了升高的折合场强如何通过增加离子扩散实际上降低分辨率,以及离子迁移率的场依赖性如何给根据测得的迁移率计算出的碰撞截面(CCS)带来不确定性。除了碰撞动力学,我们还展示了改变分析物CCS的化学转化过程,例如动态聚类或碎片化,如何导致ATD变宽、偏移或非高斯分布,以及这些过程对所施加的场强有多敏感。我们强调了第一性原理离子动力学模拟如何有助于理解甚至利用上述效应。