Suppr超能文献

肌萎缩侧索硬化症的遗传分类进展。

Advances in the genetic classification of amyotrophic lateral sclerosis.

机构信息

Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.

Department of Genetics.

出版信息

Curr Opin Neurol. 2021 Oct 1;34(5):756-764. doi: 10.1097/WCO.0000000000000986.

Abstract

PURPOSE OF REVIEW

Amyotrophic lateral sclerosis (ALS) is an archetypal complex disease wherein disease risk and severity are, for the majority of patients, the product of interaction between multiple genetic and environmental factors. We are in a period of unprecedented discovery with new large-scale genome-wide association study (GWAS) and accelerating discovery of risk genes. However, much of the observed heritability of ALS is undiscovered and we are not yet approaching elucidation of the total genetic architecture, which will be necessary for comprehensive disease subclassification.

RECENT FINDINGS

We summarize recent developments and discuss the future. New machine learning models will help to address nonlinear genetic interactions. Statistical power for genetic discovery may be boosted by reducing the search-space using cell-specific epigenetic profiles and expanding our scope to include genetically correlated phenotypes. Structural variation, somatic heterogeneity and consideration of environmental modifiers represent significant challenges which will require integration of multiple technologies and a multidisciplinary approach, including clinicians, geneticists and pathologists.

SUMMARY

The move away from fully penetrant Mendelian risk genes necessitates new experimental designs and new standards for validation. The challenges are significant, but the potential reward for successful disease subclassification is large-scale and effective personalized medicine.

摘要

目的综述

肌萎缩侧索硬化症(ALS)是一种典型的复杂疾病,对于大多数患者来说,疾病风险和严重程度是多种遗传和环境因素相互作用的结果。我们正处于一个前所未有的发现阶段,新的大规模全基因组关联研究(GWAS)和风险基因的发现速度正在加快。然而,ALS 观察到的大部分遗传率尚未被发现,我们还远未揭示出总遗传结构,这对于全面的疾病分类是必要的。

最近的发现

我们总结了最近的进展并进行了讨论。新的机器学习模型将有助于解决非线性遗传相互作用。通过使用细胞特异性表观遗传谱减少搜索空间并将范围扩大到包括遗传相关表型,可能会提高遗传发现的统计能力。结构变异、体细胞异质性以及考虑环境修饰因子是重大挑战,这将需要整合多种技术和多学科方法,包括临床医生、遗传学家和病理学家。

总结

完全外显的孟德尔风险基因的出现需要新的实验设计和验证标准。挑战是巨大的,但成功的疾病分类的潜在回报是大规模和有效的个体化医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d23/7612116/4759be22018b/EMS132503-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验