Zhang Sai, Moll Tobias, Rubin-Sigler Jasper, Tu Sharon, Li Shuya, Yuan Enming, Liu Menghui, Butt Afreen, Harvey Calum, Gornall Sarah, Alhalthli Elham, Shaw Allan, Souza Cleide Dos Santos, Ferraiuolo Laura, Hornstein Eran, Shelkovnikova Tatyana, van Dijk Charlotte H, Timpanaro Ilia S, Kenna Kevin P, Zeng Jianyang, Tsao Philip S, Shaw Pamela J, Ichida Justin K, Cooper-Knock Johnathan, Snyder Michael P
Department of Epidemiology, University of Florida, Gainesville, FL, USA.
J. Crayton Pruitt Family Department of Biomedical Engineering, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
medRxiv. 2024 Apr 1:2024.03.30.24305115. doi: 10.1101/2024.03.30.24305115.
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to . CRISPR-Cas9 editing of this variant increases expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within ASO targeting of may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.
肌萎缩侧索硬化症(ALS)是一种由运动神经元(MNs)选择性和进行性死亡引起的致命且无法治愈的神经退行性疾病。了解影响ALS存活的遗传和分子因素对于疾病管理和治疗至关重要。在本研究中,我们引入了一个深度学习驱动的遗传分析框架,将罕见的非编码遗传变异与ALS存活联系起来。使用来自人类诱导多能干细胞(iPSC)衍生的MNs的数据,该方法利用深度学习对功能性非编码变异进行优先级排序,利用表观基因组学数据将顺式调控元件(CREs)与靶基因联系起来,并通过基因水平的负担测试整合这些数据,以识别影响存活的变异、CREs和基因。我们应用这种方法分析了6715个ALS基因组,并确定了四个与存活相关的新型罕见非编码变异,包括与chr7:76,009,472:C>T相关的变异。对该变异进行CRISPR-Cas9编辑会增加iPSC衍生的MNs中的 表达,并加剧ALS特异性表型,包括TDP-43的错误定位。用反义寡核苷酸(ASO)抑制 ,且无毒性,可完全挽救散发性ALS患者和 内ALS相关G4C2重复扩增携带者来源的神经元中与ALS相关的存活缺陷。针对 的ASO靶向可能是一种广泛有效的ALS治疗方法。我们的框架为研究复杂人类疾病的非编码遗传学提供了一种通用且强大的方法。