Suppr超能文献

Deepred-Mt:用于预测植物线粒体 C 到 U RNA 编辑的深度表示学习。

Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria.

机构信息

Research Institute for Signals, Systems and Computational Intelligence, sinc(i), FICH-UNL/CONICET, Ciudad Universitaria, Santa Fe, Colectora Ruta Nacional No 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina.

ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.

出版信息

Comput Biol Med. 2021 Sep;136:104682. doi: 10.1016/j.compbiomed.2021.104682. Epub 2021 Jul 27.

Abstract

In land plant mitochondria, C-to-U RNA editing converts cytidines into uridines at highly specific RNA positions called editing sites. This editing step is essential for the correct functioning of mitochondrial proteins. When using sequence homology information, edited positions can be computationally predicted with high precision. However, predictions based on the sequence contexts of such edited positions often result in lower precision, which is limiting further advances on novel genetic engineering techniques for RNA regulation. Here, a deep convolutional neural network called Deepred-Mt is proposed. It predicts C-to-U editing events based on the 40 nucleotides flanking a given cytidine. Unlike existing methods, Deepred-Mt was optimized by using editing extent information, novel strategies of data augmentation, and a large-scale training dataset, constructed with deep RNA sequencing data of 21 plant mitochondrial genomes. In comparison to predictive methods based on sequence homology, Deepred-Mt attains significantly better predictive performance, in terms of average precision as well as F1 score. In addition, our approach is able to recognize well-known sequence motifs linked to RNA editing, and shows that the local RNA structure surrounding editing sites may be a relevant factor regulating their editing. These results demonstrate that Deepred-Mt is an effective tool for predicting C-to-U RNA editing in plant mitochondria. Source code, datasets, and detailed use cases are freely available at https://github.com/aedera/deepredmt.

摘要

在陆地植物的线粒体中,C 到 U 的 RNA 编辑将胞嘧啶转换为尿嘧啶,发生在高度特定的 RNA 位置,称为编辑位点。这个编辑步骤对于线粒体蛋白的正常功能至关重要。当使用序列同源性信息时,可以高精度地计算预测编辑位置。然而,基于这些编辑位置的序列上下文的预测往往导致精度降低,这限制了进一步开发用于 RNA 调控的新型基因工程技术。在这里,提出了一种称为 Deepred-Mt 的深度卷积神经网络。它基于给定胞嘧啶侧翼的 40 个核苷酸来预测 C 到 U 的编辑事件。与现有方法不同,Deepred-Mt 通过使用编辑程度信息、新的数据扩充策略和一个由 21 个植物线粒体基因组的深度 RNA 测序数据构建的大规模训练数据集进行了优化。与基于序列同源性的预测方法相比,Deepred-Mt 在平均精度和 F1 得分方面表现出显著更好的预测性能。此外,我们的方法能够识别与 RNA 编辑相关的已知序列基序,并表明编辑位点周围的局部 RNA 结构可能是调节其编辑的一个相关因素。这些结果表明,Deepred-Mt 是一种预测植物线粒体中 C 到 U 的 RNA 编辑的有效工具。源代码、数据集和详细的使用案例可在 https://github.com/aedera/deepredmt 上免费获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验