Suppr超能文献

从人体生物力学角度探讨机器人在步态辅助方面的应用:挑战与潜在解决方案。

Human biomechanics perspective on robotics for gait assistance: challenges and potential solutions.

机构信息

Ingenuity Labs Research Institute, Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada.

出版信息

Proc Biol Sci. 2021 Aug 11;288(1956):20211197. doi: 10.1098/rspb.2021.1197. Epub 2021 Aug 4.

Abstract

Technological advancements in robotic devices have the potential to transform human mobility through gait assistance. However, the integration of physical hardware and software control algorithms with users to assist with impaired gait poses several challenges, such as allowing the user to adopt a variety of gaits and the process for evaluating the efficacy and performance of these assistive devices. Here, I discuss some of the challenges in the development of assistive devices and the use of biomechanical concepts and tools for control and test validation. Several potential solutions are proposed through the case study of one project that aimed to provide gait assistance for individuals with a spinal cord injury. Further challenges and future directions are discussed, with emphasis that diverse perspectives and approaches in gait assistance will accelerate engineering solutions towards regaining mobility.

摘要

机器人技术的进步有可能通过步态辅助来改变人类的移动能力。然而,将物理硬件和软件控制算法与用户集成以辅助受损的步态会带来一些挑战,例如允许用户采用多种步态以及评估这些辅助设备的效果和性能的过程。在这里,我讨论了辅助设备开发以及控制和测试验证中使用生物力学概念和工具的一些挑战。通过一个旨在为脊髓损伤患者提供步态辅助的项目案例,提出了几种潜在的解决方案。进一步讨论了挑战和未来方向,并强调了在步态辅助方面的多样化观点和方法将加速工程解决方案以恢复移动能力。

相似文献

1
Human biomechanics perspective on robotics for gait assistance: challenges and potential solutions.
Proc Biol Sci. 2021 Aug 11;288(1956):20211197. doi: 10.1098/rspb.2021.1197. Epub 2021 Aug 4.
3
A Human-assistive Robotic Platform with Quadrupedal Locomotion.
IEEE Int Conf Rehabil Robot. 2019 Jun;2019:305-310. doi: 10.1109/ICORR.2019.8779398.
4
User-Adaptive Assistance of Assistive Knee Braces for Gait Rehabilitation.
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):1994-2005. doi: 10.1109/TNSRE.2018.2868693. Epub 2018 Sep 5.
6
Compliant gait assistance triggered by user intention.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3885-8. doi: 10.1109/EMBC.2015.7319242.
8
Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?
Neurol Sci. 2016 Apr;37(4):503-14. doi: 10.1007/s10072-016-2474-4. Epub 2016 Jan 18.
9
Effects of locomotor training after incomplete spinal cord injury: a systematic review.
Arch Phys Med Rehabil. 2013 Nov;94(11):2297-308. doi: 10.1016/j.apmr.2013.06.023. Epub 2013 Jul 9.
10
Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.
J Neuroeng Rehabil. 2016 Jun 16;13(1):57. doi: 10.1186/s12984-016-0166-1.

引用本文的文献

2
Robotic exoskeleton-assisted walking rehabilitation for stroke patients: a bibliometric and visual analysis.
Front Bioeng Biotechnol. 2024 May 17;12:1391322. doi: 10.3389/fbioe.2024.1391322. eCollection 2024.
3
Exoskeletons need to react faster than physiological responses to improve standing balance.
Sci Robot. 2023 Feb 22;8(75):eadf1080. doi: 10.1126/scirobotics.adf1080. Epub 2023 Feb 15.
4
Stability and manoeuvrability in animal movement: lessons from biology, modelling and robotics.
Proc Biol Sci. 2022 Jan 26;289(1967):20212492. doi: 10.1098/rspb.2021.2492. Epub 2022 Jan 19.

本文引用的文献

1
Evaluation of Motor Primitive-Based Adaptive Control for Lower Limb Exoskeletons.
Front Robot AI. 2020 Dec 16;7:575217. doi: 10.3389/frobt.2020.575217. eCollection 2020.
2
Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:330-339. doi: 10.1109/TNSRE.2021.3049960. Epub 2021 Mar 2.
3
Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects.
J Biol Regul Homeost Agents. 2020 Sep-Oct;34(5 Suppl. 3):147-164. Technology in Medicine.
4
Human-in-the-loop optimization of hip assistance with a soft exosuit during walking.
Sci Robot. 2018 Feb 28;3(15). doi: 10.1126/scirobotics.aar5438.
5
Upper body and ankle strategies compensate for reduced lateral stability at very slow walking speeds.
Proc Biol Sci. 2020 Oct 14;287(1936):20201685. doi: 10.1098/rspb.2020.1685.
6
Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review.
IEEE Trans Neural Syst Rehabil Eng. 2020 Jul;28(7):1573-1583. doi: 10.1109/TNSRE.2020.2989481.
8
Mechanics of very slow human walking.
Sci Rep. 2019 Dec 2;9(1):18079. doi: 10.1038/s41598-019-54271-2.
9
Reducing the metabolic rate of walking and running with a versatile, portable exosuit.
Science. 2019 Aug 16;365(6454):668-672. doi: 10.1126/science.aav7536.
10
Effects of a powered ankle-foot orthosis on perturbed standing balance.
J Neuroeng Rehabil. 2018 Jun 18;15(1):50. doi: 10.1186/s12984-018-0393-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验