Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland.
Sci Transl Med. 2017 Jul 19;9(399). doi: 10.1126/scitranslmed.aah3621.
Gait recovery after neurological disorders requires remastering the interplay between body mechanics and gravitational forces. Despite the importance of gravity-dependent gait interactions and active participation for promoting this learning, these essential components of gait rehabilitation have received comparatively little attention. To address these issues, we developed an adaptive algorithm that personalizes multidirectional forces applied to the trunk based on patient-specific motor deficits. Implementation of this algorithm in a robotic interface reestablished gait dynamics during highly participative locomotion within a large and safe environment. This multidirectional gravity-assist enabled natural walking in nonambulatory individuals with spinal cord injury or stroke and enhanced skilled locomotor control in the less-impaired subjects. A 1-hour training session with multidirectional gravity-assist improved locomotor performance tested without robotic assistance immediately after training, whereas walking the same distance on a treadmill did not ameliorate gait. These results highlight the importance of precise trunk support to deliver gait rehabilitation protocols and establish a practical framework to apply these concepts in clinical routine.
神经障碍患者的步态恢复需要重新掌握身体力学和重力之间的相互作用。尽管重力依赖的步态相互作用和主动参与对于促进这种学习很重要,但步态康复的这些基本组成部分相对较少受到关注。为了解决这些问题,我们开发了一种自适应算法,该算法根据患者特定的运动缺陷来个性化应用于躯干的多方向力。在一个大型且安全的环境中,通过机器人界面实现该算法可以在高度参与的运动中重新建立步态动力学。这种多方向的重力辅助使脊髓损伤或中风的非运动个体能够自然行走,并增强了运动功能障碍较小的个体的熟练运动控制能力。在进行多方向重力辅助训练 1 小时后,即使在没有机器人辅助的情况下,也能立即提高运动表现,而在跑步机上行走相同的距离并不能改善步态。这些结果强调了精确的躯干支撑在提供步态康复方案方面的重要性,并建立了一个实用框架,以便在临床常规中应用这些概念。