Suppr超能文献

一种用于在站立并借助支撑物使用智能手机时量化关节扭矩和支撑反作用力的预测模型。

A predictive model to quantify joint torques and support reaction forces when using a smartphone while standing with support.

作者信息

Gorce Philippe, Jacquier-Bret Julien, Merbah Johan

机构信息

International Institut of Biomechanics and Surgical Ergonomics, Université de Toulon, Toulon, France.

Laboratoire HandiBio, Université de Toulon, Toulon, France.

出版信息

Ergonomics. 2022 Apr;65(4):531-545. doi: 10.1080/00140139.2021.1963845. Epub 2021 Aug 23.

Abstract

The present study had a dual objective: (1) to present and validate a predictive model of standing posture in the sagittal plane, joint torques and support forces for a smartphone user built from biomechanical principles; (2) propose risk scales for joint torques and reaction forces based on simulations in order to use them into the musculoskeletal disorders prevention. Comparison of the modelled data with experimental measurements (400 tested postures with sample size verification) for calling and texting tasks highlights the model's ability to correctly estimate posture and reaction forces on the ground. The model was able to provide estimates of the range of variation of each parameter for a wide range of environmental conditions as a function of the user body mass index (setting between 12.5 and 50). Joint torques risk scales have been constructed, especially for shoulder and elbow, to characterise the risks incurred by the users. The proposed model enables the postures, joint torques and reaction forces to be estimated from subject's body mass index and environmental configuration without resorting to experimentation, which is relevant in industry. This approach allows the proposition of new scales based on joint torques to reinforce the recommendations for MSDs prevention. BMI: body mass index; LUBA: postural loading on the upper body assessment; MSDs: musculoskeletal disorders; RULA: rapid upper limb assessment; WHO: World Health Organization.

摘要

本研究有两个目标

(1)基于生物力学原理,提出并验证一个针对智能手机用户矢状面站立姿势、关节扭矩和支撑力的预测模型;(2)基于模拟结果提出关节扭矩和反作用力的风险量表,以便将其用于预防肌肉骨骼疾病。将建模数据与通话和短信任务的实验测量结果(400个测试姿势及样本量验证)进行比较,突出了该模型正确估计地面姿势和反作用力的能力。该模型能够根据用户体重指数(设定范围为12.5至50),在广泛的环境条件下提供每个参数变化范围的估计值。已经构建了关节扭矩风险量表,特别是针对肩部和肘部,以表征用户所面临的风险。所提出的模型能够根据受试者的体重指数和环境配置来估计姿势、关节扭矩和反作用力,而无需进行实验,这在工业领域具有相关性。这种方法允许基于关节扭矩提出新的量表,以加强对肌肉骨骼疾病预防的建议。BMI:体重指数;LUBA:上身姿势负荷评估;MSDs:肌肉骨骼疾病;RULA:快速上肢评估;WHO:世界卫生组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验