Suppr超能文献

利用微流控装置对 SOD1 ALS 小鼠培养神经元中的轴突运输进行高通量定量分析。

High-throughput quantitative analysis of axonal transport in cultured neurons from SOD1 ALS mice by using a microfluidic device.

机构信息

Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan.

Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.

出版信息

Neurosci Res. 2022 Jan;174:46-52. doi: 10.1016/j.neures.2021.07.005. Epub 2021 Aug 2.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective loss of motor neurons. We have previously shown that autophagosome-like vesicular structures are progressively accumulated in the spinal axons of an ALS mouse model, overexpressing human Cu/Zn superoxide dismutase (SOD1) mutant, prior to the onset of motor symptoms. This suggests that axonal transport perturbation can be an early sign of neuronal dysfunction. However, the exact causal relationship between axonal transport deficits and neurodegeneration is not fully understood. To clarify whether axonal transport of organelles even in neurons at early developmental stages was affected by overexpression of mutant SOD1, we conducted a microfluidic device-based high-throughput quantitative analysis of the axonal transport of acidic vesicles and mitochondria in primary cultured cortical neurons established from SOD1 transgenic mice. Compared to wild-type (WT), a significantly increased number of motile acidic vesicles, i.e., autophagosomes and/or late-endosomes, was observed in the axons of SOD1 neurons. By contrast, mitochondria moving along the axons were significantly decreased in SOD1 compared to WT. Since such phenotypes, where the axonal transport of these organelles is differently affected by mutant SOD1 expression, emerge before axonal degeneration, axonal transport deficits could dysregulate axon homeostasis, thereby ultimately accelerating neurodegeneration.

摘要

肌萎缩侧索硬化症(ALS)是一种神经退行性疾病,其特征是运动神经元选择性丧失。我们之前已经表明,在表达人 Cu/Zn 超氧化物歧化酶(SOD1)突变体的 ALS 小鼠模型的脊髓轴突中,自噬体样囊泡结构在运动症状出现之前逐渐积累。这表明轴突运输障碍可能是神经元功能障碍的早期迹象。然而,轴突运输缺陷与神经退行性变之间的确切因果关系尚不完全清楚。为了阐明即使在早期发育阶段神经元中,细胞器的轴突运输是否受到突变型 SOD1 的过度表达的影响,我们使用基于微流控装置的高通量定量分析方法,研究了来自 SOD1 转基因小鼠的原代皮质神经元中酸性囊泡和线粒体的轴突运输。与野生型(WT)相比,在 SOD1 神经元的轴突中观察到大量运动性酸性囊泡(即自噬体和/或晚期内体)的数量显著增加。相比之下,与 WT 相比,SOD1 中沿轴突移动的线粒体明显减少。由于这些表型(其中这些细胞器的轴突运输受到突变型 SOD1 表达的不同影响)出现在轴突退化之前,因此轴突运输缺陷可能会扰乱轴突稳态,从而最终加速神经退行性变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验