Grygorczyk Ryszard, Boudreault Francis, Ponomarchuk Olga, Tan Ju Jing, Furuya Kishio, Goldgewicht Joseph, Kenfack Falonne Démèze, Yu François
Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada.
Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada.
Life (Basel). 2021 Jul 16;11(7):700. doi: 10.3390/life11070700.
The lytic release of ATP due to cell and tissue injury constitutes an important source of extracellular nucleotides and may have physiological and pathophysiological roles by triggering purinergic signalling pathways. In the lungs, extracellular ATP can have protective effects by stimulating surfactant and mucus secretion. However, excessive extracellular ATP levels, such as observed in ventilator-induced lung injury, act as a danger-associated signal that activates NLRP3 inflammasome contributing to lung damage. Here, we discuss examples of lytic release that we have identified in our studies using real-time luciferin-luciferase luminescence imaging of extracellular ATP. In alveolar A549 cells, hypotonic shock-induced ATP release shows rapid lytic and slow-rising non-lytic components. Lytic release originates from the lysis of single fragile cells that could be seen as distinct spikes of ATP-dependent luminescence, but under physiological conditions, its contribution is minimal <1% of total release. By contrast, ATP release from red blood cells results primarily from hemolysis, a physiological mechanism contributing to the regulation of local blood flow in response to tissue hypoxia, mechanical stimulation and temperature changes. Lytic release of cellular ATP may have therapeutic applications, as exemplified by the use of ultrasound and microbubble-stimulated release for enhancing cancer immunotherapy in vivo.
由于细胞和组织损伤导致的ATP的溶解性释放构成了细胞外核苷酸的重要来源,并可能通过触发嘌呤能信号通路发挥生理和病理生理作用。在肺部,细胞外ATP可通过刺激表面活性剂和黏液分泌发挥保护作用。然而,在呼吸机诱导的肺损伤中观察到的细胞外ATP水平过高,作为一种危险相关信号,激活NLRP3炎性小体,导致肺损伤。在此,我们讨论在我们利用细胞外ATP的实时荧光素-荧光素酶发光成像研究中所识别的溶解性释放的例子。在肺泡A549细胞中,低渗休克诱导的ATP释放呈现出快速溶解性和缓慢上升的非溶解性成分。溶解性释放源自单个脆弱细胞的裂解,可被视为ATP依赖性发光的明显峰值,但在生理条件下,其贡献极小,占总释放量的不到1%。相比之下,红细胞释放ATP主要源于溶血,这是一种生理机制,有助于响应组织缺氧、机械刺激和温度变化调节局部血流。细胞ATP的溶解性释放可能具有治疗应用,如利用超声和微泡刺激释放来增强体内癌症免疫治疗所示。