Suppr超能文献

位于 III 域电压传感器模块的电荷取代增强了昆虫钠离子通道上的 3 位和 4 位毒素的作用。

Charge substitutions at the voltage-sensing module of domain III enhance actions of site-3 and site-4 toxins on an insect sodium channel.

机构信息

Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Entomology, Michigan State University, East Lansing, MI, USA.

Department of Entomology, Michigan State University, East Lansing, MI, USA.

出版信息

Insect Biochem Mol Biol. 2021 Oct;137:103625. doi: 10.1016/j.ibmb.2021.103625. Epub 2021 Aug 3.

Abstract

Scorpion α-toxins bind at the pharmacologically-defined site-3 on the sodium channel and inhibit channel inactivation by preventing the outward movement of the voltage sensor in domain IV (IVS4), whereas scorpion β-toxins bind at site-4 on the sodium channel and enhance channel activation by trapping the voltage sensor of domain II (IIS4) in its outward position. However, limited information is available on the role of the voltage-sensing modules (VSM, comprising S1-S4) of domains I and III in toxin actions. We have previously shown that charge reversing substitutions of the innermost positively-charged residues in IIIS4 (R4E, R5E) increase the activity of an insect-selective site-4 scorpion toxin, Lqh-dprITc, on BgNa1-1a, a cockroach sodium channel. Here we show that substitutions R4E and R5E in IIIS4 also increase the activity of two site-3 toxins, LqhαIT from Leiurusquinquestriatus hebraeus and insect-selective Av3 from Anemonia viridis. Furthermore, charge reversal of either of two conserved negatively-charged residues, D1K and E2K, in IIIS2 also increase the action of the site-3 and site-4 toxins. Homology modeling suggests that S2-D1 and S2-E2 interact with S4-R4 and S4-R5 in the VSM of domain III (III-VSM), respectively, in the activated state of the channel. However, charge swapping between S2-D1 and S4-R4 had no compensatory effects on gating or toxin actions, suggesting that charged residue interactions are complex. Collectively, our results highlight the involvement of III-VSM in the actions of both site 3 and site 4 toxins, suggesting that charge reversing substitutions in III-VSM allosterically facilitate IIS4 or IVS4 voltage sensor trapping by these toxins.

摘要

蝎类α-毒素与钠离子通道上药理学定义的位点 3 结合,通过阻止 IV 域(IVS4)中的电压传感器向外移动来抑制通道失活,而蝎类β-毒素与钠离子通道上的位点 4 结合,并通过捕获 II 域(IIS4)的电压传感器将其固定在外向位置来增强通道激活。然而,关于 I 域和 III 域的电压感应模块(VSM,由 S1-S4 组成)在毒素作用中的作用的信息有限。我们之前已经表明,IIIS4 中最内侧带正电荷残基(R4E、R5E)的电荷反转取代会增加昆虫选择性位点 4 蝎毒素 Lqh-dprITc 在蟑螂钠离子通道 BgNa1-1a 上的活性。在这里,我们表明 IIIS4 中的取代 R4E 和 R5E 也会增加两种位点 3 毒素 LqhαIT(来自 Leiurusquinquestriatus hebraeus)和昆虫选择性 Av3(来自 Anemonia viridis)的活性。此外,IIIS2 中两个保守的带负电荷残基 D1K 和 E2K 中的任一个的电荷反转也会增加位点 3 和位点 4 毒素的作用。同源建模表明,在通道的激活状态下,S2-D1 和 S2-E2 分别与 III 域 VSM(III-VSM)中的 S4-R4 和 S4-R5 相互作用。然而,S2-D1 和 S4-R4 之间的电荷交换对门控或毒素作用没有补偿效应,这表明带电残基相互作用很复杂。总的来说,我们的结果强调了 III-VSM 参与了位点 3 和位点 4 毒素的作用,表明 III-VSM 中的电荷反转取代通过这些毒素变构地促进 IIS4 或 IVS4 电压传感器的捕获。

相似文献

1
Charge substitutions at the voltage-sensing module of domain III enhance actions of site-3 and site-4 toxins on an insect sodium channel.
Insect Biochem Mol Biol. 2021 Oct;137:103625. doi: 10.1016/j.ibmb.2021.103625. Epub 2021 Aug 3.
2
Substitutions in the domain III voltage-sensing module enhance the sensitivity of an insect sodium channel to a scorpion beta-toxin.
J Biol Chem. 2011 May 6;286(18):15781-8. doi: 10.1074/jbc.M110.217000. Epub 2011 Mar 15.
3
Mapping the interaction surface of scorpion β-toxins with an insect sodium channel.
Biochem J. 2021 Jul 30;478(14):2843-2869. doi: 10.1042/BCJ20210336.
5
Mapping of scorpion toxin receptor sites at voltage-gated sodium channels.
Toxicon. 2012 Sep 15;60(4):502-11. doi: 10.1016/j.toxicon.2012.03.022. Epub 2012 Apr 4.
7
Beta-scorpion toxin effects suggest electrostatic interactions in domain II of voltage-dependent sodium channels.
J Physiol. 2005 Oct 1;568(Pt 1):13-30. doi: 10.1113/jphysiol.2005.093484. Epub 2005 Jul 14.
10
Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels.
J Biol Chem. 2012 Aug 31;287(36):30719-28. doi: 10.1074/jbc.M112.370742. Epub 2012 Jul 2.

本文引用的文献

2
Roles for Countercharge in the Voltage Sensor Domain of Ion Channels.
Front Pharmacol. 2020 Feb 28;11:160. doi: 10.3389/fphar.2020.00160. eCollection 2020.
3
Structural basis of α-scorpion toxin action on Na channels.
Science. 2019 Mar 22;363(6433). doi: 10.1126/science.aav8573. Epub 2019 Feb 7.
4
Structure of the human voltage-gated sodium channel Na1.4 in complex with β1.
Science. 2018 Oct 19;362(6412). doi: 10.1126/science.aau2486. Epub 2018 Sep 6.
5
Structural basis for the modulation of voltage-gated sodium channels by animal toxins.
Science. 2018 Oct 19;362(6412). doi: 10.1126/science.aau2596. Epub 2018 Jul 26.
6
JPred4: a protein secondary structure prediction server.
Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94. doi: 10.1093/nar/gkv332. Epub 2015 Apr 16.
8
The voltage sensor module in sodium channels.
Handb Exp Pharmacol. 2014;221:7-31. doi: 10.1007/978-3-642-41588-3_2.
9
Sequence variations at I260 and A1731 contribute to persistent currents in Drosophila sodium channels.
Neuroscience. 2014 May 30;268:297-308. doi: 10.1016/j.neuroscience.2014.03.028. Epub 2014 Mar 21.
10
Evolutionary imprint of activation: the design principles of VSDs.
J Gen Physiol. 2014 Feb;143(2):145-56. doi: 10.1085/jgp.201311103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验