Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Department of Entomology, Michigan State University, East Lansing, MI, USA.
Department of Entomology, Michigan State University, East Lansing, MI, USA.
Insect Biochem Mol Biol. 2021 Oct;137:103625. doi: 10.1016/j.ibmb.2021.103625. Epub 2021 Aug 3.
Scorpion α-toxins bind at the pharmacologically-defined site-3 on the sodium channel and inhibit channel inactivation by preventing the outward movement of the voltage sensor in domain IV (IVS4), whereas scorpion β-toxins bind at site-4 on the sodium channel and enhance channel activation by trapping the voltage sensor of domain II (IIS4) in its outward position. However, limited information is available on the role of the voltage-sensing modules (VSM, comprising S1-S4) of domains I and III in toxin actions. We have previously shown that charge reversing substitutions of the innermost positively-charged residues in IIIS4 (R4E, R5E) increase the activity of an insect-selective site-4 scorpion toxin, Lqh-dprITc, on BgNa1-1a, a cockroach sodium channel. Here we show that substitutions R4E and R5E in IIIS4 also increase the activity of two site-3 toxins, LqhαIT from Leiurusquinquestriatus hebraeus and insect-selective Av3 from Anemonia viridis. Furthermore, charge reversal of either of two conserved negatively-charged residues, D1K and E2K, in IIIS2 also increase the action of the site-3 and site-4 toxins. Homology modeling suggests that S2-D1 and S2-E2 interact with S4-R4 and S4-R5 in the VSM of domain III (III-VSM), respectively, in the activated state of the channel. However, charge swapping between S2-D1 and S4-R4 had no compensatory effects on gating or toxin actions, suggesting that charged residue interactions are complex. Collectively, our results highlight the involvement of III-VSM in the actions of both site 3 and site 4 toxins, suggesting that charge reversing substitutions in III-VSM allosterically facilitate IIS4 or IVS4 voltage sensor trapping by these toxins.
蝎类α-毒素与钠离子通道上药理学定义的位点 3 结合,通过阻止 IV 域(IVS4)中的电压传感器向外移动来抑制通道失活,而蝎类β-毒素与钠离子通道上的位点 4 结合,并通过捕获 II 域(IIS4)的电压传感器将其固定在外向位置来增强通道激活。然而,关于 I 域和 III 域的电压感应模块(VSM,由 S1-S4 组成)在毒素作用中的作用的信息有限。我们之前已经表明,IIIS4 中最内侧带正电荷残基(R4E、R5E)的电荷反转取代会增加昆虫选择性位点 4 蝎毒素 Lqh-dprITc 在蟑螂钠离子通道 BgNa1-1a 上的活性。在这里,我们表明 IIIS4 中的取代 R4E 和 R5E 也会增加两种位点 3 毒素 LqhαIT(来自 Leiurusquinquestriatus hebraeus)和昆虫选择性 Av3(来自 Anemonia viridis)的活性。此外,IIIS2 中两个保守的带负电荷残基 D1K 和 E2K 中的任一个的电荷反转也会增加位点 3 和位点 4 毒素的作用。同源建模表明,在通道的激活状态下,S2-D1 和 S2-E2 分别与 III 域 VSM(III-VSM)中的 S4-R4 和 S4-R5 相互作用。然而,S2-D1 和 S4-R4 之间的电荷交换对门控或毒素作用没有补偿效应,这表明带电残基相互作用很复杂。总的来说,我们的结果强调了 III-VSM 参与了位点 3 和位点 4 毒素的作用,表明 III-VSM 中的电荷反转取代通过这些毒素变构地促进 IIS4 或 IVS4 电压传感器的捕获。