Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA.
J Biol Chem. 2012 Aug 31;287(36):30719-28. doi: 10.1074/jbc.M112.370742. Epub 2012 Jul 2.
Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIV(E15A). Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on Na(V) channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on Na(V) channels acts synergistically to modify channel gating and paralyze prey.
电压门控钠离子(Na(v))通道的激活引发并传播可兴奋细胞中的动作电位。β-蝎毒素,包括来自 Centruroides suffusus suffusus 的毒素 IV(CssIV),增强 Na(V)通道的激活。CssIV 通过电压传感器捕获机制稳定处于激活状态的 II 域电压传感器。已在 II 域的 S1-S2 和 S3-S4 细胞外环中鉴定出 CssIV 作用所需的氨基酸残基。III 域的细胞外环也参与毒素作用,但尚未鉴定出单个氨基酸残基。我们使用定点突变和电压钳记录来研究涉及 CssIV 作用的 III 域氨基酸残基。在 IIISS2-S6 环中,四个位置的五个取代改变了 CssIV(E15A)的电压传感器捕获。三个取代(E1438A、D1445A 和 D1445Y)显著降低了电压传感器捕获,而另外两个取代(N1436G 和 L1439A)增加了电压传感器捕获。这些双向作用表明 IIISS2-S6 中的残基与 CssIV 既产生正相互作用也产生负相互作用。N1436G 通过增加与静息状态的结合亲和力来增强电压传感器的捕获,而 L1439A 则增加了电压传感器的捕获效率。基于这些结果,使用 Rosetta 建模方法开发了毒素-通道相互作用的三维模型。这些数据为毒素作用的电压传感器捕获机制提供了额外的分子见解,并定义了β-蝎毒素在 Na(V)通道上的三个点相互作用位点。α-和β-蝎毒素与 Na(V)通道上两个独特的、拟对称组织的受体位点的结合协同作用,改变通道门控并使猎物瘫痪。