Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany.
Research Group Molecular Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
Cells. 2021 Jul 20;10(7):1835. doi: 10.3390/cells10071835.
Postsynaptic structures on excitatory neurons, dendritic spines, are actin-rich. It is well known that actin-binding proteins regulate actin dynamics and by this means orchestrate structural plasticity during the development of the brain, as well as synaptic plasticity mediating learning and memory processes. The actin-binding protein cortactin is localized to pre- and postsynaptic structures and translocates in a stimulus-dependent manner between spines and the dendritic compartment, thereby indicating a crucial role for synaptic plasticity and neuronal function. While it is known that cortactin directly binds F-actin, the Arp2/3 complex important for actin nucleation and branching as well as other factors involved in synaptic plasticity processes, its precise role in modulating actin remodeling in neurons needs to be deciphered. In this study, we characterized the general neuronal function of cortactin in knockout mice. Interestingly, we found that the loss of cortactin leads to deficits in hippocampus-dependent spatial memory formation. This impairment is correlated with a prominent dysregulation of functional and structural plasticity. Additional evidence shows impaired long-term potentiation in cortactin knockout mice together with a complete absence of structural spine plasticity. These phenotypes might at least in part be explained by alterations in the activity-dependent modulation of synaptic actin in cortactin-deficient neurons.
树突棘上的兴奋性神经元突触后结构富含肌动蛋白。众所周知,肌动蛋白结合蛋白调节肌动蛋白的动态,并以此方式协调大脑发育过程中的结构可塑性,以及介导学习和记忆过程的突触可塑性。肌动蛋白结合蛋白 cortactin 定位于突触前和突触后结构,并以刺激依赖性的方式在棘突和树突区室之间易位,从而表明其在突触可塑性和神经元功能中起着关键作用。虽然已知 cortactin 直接结合 F-肌动蛋白,但对于肌动蛋白成核和分支很重要的 Arp2/3 复合物以及参与突触可塑性过程的其他因素,其在调节神经元中肌动蛋白重塑的确切作用仍需要破译。在这项研究中,我们描述了 cortactin 在敲除小鼠中的一般神经元功能。有趣的是,我们发现 cortactin 的缺失导致海马依赖的空间记忆形成缺陷。这种损伤与功能和结构可塑性的明显失调有关。进一步的证据表明,在 cortactin 敲除小鼠中,长时程增强作用受损,同时完全没有结构棘突可塑性。这些表型至少部分可以通过缺失 cortactin 的神经元中突触肌动蛋白的活性依赖性调节改变来解释。