Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada.
Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.
Mol Cell Neurosci. 2018 Sep;91:122-130. doi: 10.1016/j.mcn.2018.07.001. Epub 2018 Jul 9.
Activity-dependent plasticity of synaptic structure and function plays an essential role in neuronal development and in cognitive functions including learning and memory. The formation, maintenance and modulation of dendritic spines are mainly controlled by the dynamics of actin filaments (F-actin) through interaction with various actin-binding proteins (ABPs) and postsynaptic signaling messengers. Induction of long-term potentiation (LTP) triggers a cascade of events involving Ca signaling, intracellular pathways such as cAMP and cGMP, and regulation of ABPs such as CaMKII, Cofilin, Aip1, Arp2/3, α-actinin, Profilin and Drebrin. We review here how these ABPs modulate the rate of assembly, disassembly, stabilization and bundling of F-actin during LTP induction. We highlight the crucial role that CaMKII exerts in both functional and structural plasticity by directly coupling Ca signaling with F-actin dynamics through the β subunit. Moreover, we show how cAMP and cGMP second messengers regulate postsynaptic structural potentiation. Brain disorders such as Alzheimer's disease, schizophrenia or autism, are associated with alterations in the regulation of F-actin dynamics by these ABPs and signaling messengers. Thus, a better understanding of the molecular mechanisms controlling actin cytoskeleton can provide cues for the treatment of these disorders.
突触结构和功能的活动依赖性可塑性在神经元发育和认知功能(包括学习和记忆)中起着至关重要的作用。树突棘的形成、维持和调节主要通过与各种肌动蛋白结合蛋白 (ABP) 和突触后信号信使的相互作用来控制肌动蛋白丝 (F-actin) 的动力学。长时程增强 (LTP) 的诱导引发了一系列事件,涉及 Ca 信号、细胞内途径(如 cAMP 和 cGMP)以及 ABP 的调节,如 CaMKII、Cofilin、Aip1、Arp2/3、α-肌动蛋白、 Profilin 和 Drebrin。我们在这里回顾了这些 ABP 如何在 LTP 诱导过程中调节 F-actin 的组装、拆卸、稳定和束集的速率。我们强调了 CaMKII 通过β亚基直接将 Ca 信号与 F-actin 动力学偶联在功能和结构可塑性中发挥的关键作用。此外,我们展示了 cAMP 和 cGMP 第二信使如何调节突触后结构增强。阿尔茨海默病、精神分裂症或自闭症等脑部疾病与这些 ABP 和信号信使对 F-actin 动力学的调节改变有关。因此,更好地了解控制肌动蛋白细胞骨架的分子机制可以为这些疾病的治疗提供线索。