University Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, 20132 Milano, Italy.
Department of Economics, Management and Quantitative Methods, Università degli Studi di Milano, 20122 Milano, Italy.
Int J Environ Res Public Health. 2021 Jul 30;18(15):8110. doi: 10.3390/ijerph18158110.
In this paper, we focus on a Bayesian network s approach to combine traditional survey and social network data and official statistics to evaluate well-being. Bayesian networks permit the use of data with different geographical levels (provincial and regional) and time frequencies (daily, quarterly, and annual). The aim of this study was twofold: to describe the relationship between survey and social network data and to investigate the link between social network data and official statistics. Particularly, we focused on whether the big data anticipate the information provided by the official statistics. The applications, referring to Italy from 2012 to 2017, were performed using ISTAT's survey data, some variables related to the considered time period or geographical levels, a composite index of well-being obtained by Twitter data, and official statistics that summarize the labor market.
在本文中,我们专注于贝叶斯网络方法,将传统调查和社交网络数据与官方统计数据相结合,以评估幸福感。贝叶斯网络允许使用具有不同地理层次(省级和地区级)和时间频率(每日、每季度和每年)的数据。本研究的目的有两个:描述调查和社交网络数据之间的关系,并研究社交网络数据与官方统计数据之间的联系。具体来说,我们专注于大数据是否可以预测官方统计数据提供的信息。应用案例涉及 2012 年至 2017 年的意大利,使用了 ISTAT 的调查数据、与考虑时间段或地理层次相关的一些变量、通过 Twitter 数据获得的幸福感综合指数,以及总结劳动力市场的官方统计数据。