Suppr超能文献

利用不同数据源深化幸福感评估:贝叶斯网络方法。

Deepening Well-Being Evaluation with Different Data Sources: A Bayesian Networks Approach.

机构信息

University Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, 20132 Milano, Italy.

Department of Economics, Management and Quantitative Methods, Università degli Studi di Milano, 20122 Milano, Italy.

出版信息

Int J Environ Res Public Health. 2021 Jul 30;18(15):8110. doi: 10.3390/ijerph18158110.

Abstract

In this paper, we focus on a Bayesian network s approach to combine traditional survey and social network data and official statistics to evaluate well-being. Bayesian networks permit the use of data with different geographical levels (provincial and regional) and time frequencies (daily, quarterly, and annual). The aim of this study was twofold: to describe the relationship between survey and social network data and to investigate the link between social network data and official statistics. Particularly, we focused on whether the big data anticipate the information provided by the official statistics. The applications, referring to Italy from 2012 to 2017, were performed using ISTAT's survey data, some variables related to the considered time period or geographical levels, a composite index of well-being obtained by Twitter data, and official statistics that summarize the labor market.

摘要

在本文中,我们专注于贝叶斯网络方法,将传统调查和社交网络数据与官方统计数据相结合,以评估幸福感。贝叶斯网络允许使用具有不同地理层次(省级和地区级)和时间频率(每日、每季度和每年)的数据。本研究的目的有两个:描述调查和社交网络数据之间的关系,并研究社交网络数据与官方统计数据之间的联系。具体来说,我们专注于大数据是否可以预测官方统计数据提供的信息。应用案例涉及 2012 年至 2017 年的意大利,使用了 ISTAT 的调查数据、与考虑时间段或地理层次相关的一些变量、通过 Twitter 数据获得的幸福感综合指数,以及总结劳动力市场的官方统计数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fc2/8345569/1841d8c0697f/ijerph-18-08110-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验