Suppr超能文献

钛基金属间化合物合金的增材制造:下一代机器的综述与概念化

Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine.

作者信息

Dzogbewu Thywill Cephas, du Preez Willie Bouwer

机构信息

Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Built Environment and Information Technology, Central University of Technology, Free State, Bloemfontein 9301, South Africa.

Centre for Rapid Prototyping and Manufacturing, Faculty of Engineering, Built Environment and Information Technology, Central University of Technology, Free State, Bloemfontein 9301, South Africa.

出版信息

Materials (Basel). 2021 Aug 2;14(15):4317. doi: 10.3390/ma14154317.

Abstract

TiAl-based intermetallic alloys have come to the fore as the preferred alloys for high-temperature applications. Conventional methods (casting, forging, sheet forming, extrusion, etc.) have been applied to produce TiAl intermetallic alloys. However, the inherent limitations of conventional methods do not permit the production of the TiAl alloys with intricate geometries. Additive manufacturing technologies such as electron beam melting (EBM) and laser powder bed fusion (LPBF), were used to produce TiAl alloys with complex geometries. EBM technology can produce crack-free TiAl components but lacks geometrical accuracy. LPBF technology has great geometrical precision that could be used to produce TiAl alloys with tailored complex geometries, but cannot produce crack-free TiAl components. To satisfy the current industrial requirement of producing crack-free TiAl alloys with tailored geometries, the paper proposes a new heating model for the LPBF manufacturing process. The model could maintain even temperature between the solidified and subsequent layers, reducing temperature gradients (residual stress), which could eliminate crack formation. The new conceptualized model also opens a window for in situ heat treatment of the built samples to obtain the desired TiAl (-phase) and TiAl (-phase) intermetallic phases for high-temperature operations. In situ heat treatment would also improve the homogeneity of the microstructure of LPBF manufactured samples.

摘要

钛铝基金属间化合物合金已成为高温应用的首选合金。传统方法(铸造、锻造、板材成型、挤压等)已被用于生产钛铝基金属间化合物合金。然而,传统方法的固有局限性不允许生产具有复杂几何形状的钛铝合金。诸如电子束熔炼(EBM)和激光粉末床熔融(LPBF)等增材制造技术被用于生产具有复杂几何形状的钛铝合金。电子束熔炼技术可以生产无裂纹的钛铝部件,但缺乏几何精度。激光粉末床熔融技术具有很高的几何精度,可用于生产具有定制复杂几何形状的钛铝合金,但无法生产无裂纹的钛铝部件。为了满足当前工业上生产具有定制几何形状的无裂纹钛铝合金的要求,本文提出了一种用于激光粉末床熔融制造工艺的新型加热模型。该模型可以保持凝固层和后续层之间的温度均匀,降低温度梯度(残余应力),从而消除裂纹形成。这种新的概念模型还为对成型样品进行原位热处理打开了一扇窗口,以获得用于高温操作的所需钛铝(α相)和钛铝(γ相)金属间相。原位热处理还将改善激光粉末床熔融制造样品的微观结构均匀性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1ca/8348514/52f5d4e212d2/materials-14-04317-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验