Suppr超能文献

通过正电子发射断层扫描(PET)评估的葡萄糖代谢谱与胃癌的分子特征图谱相关。

Glucose metabolic profiles evaluated by PET associated with molecular characteristic landscape of gastric cancer.

机构信息

Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.

Department of General, Visceral and Transplant Surgery, University of Mainz, Mainz, Germany.

出版信息

Gastric Cancer. 2022 Jan;25(1):149-160. doi: 10.1007/s10120-021-01223-3. Epub 2021 Aug 7.

Abstract

BACKGROUND

Although FDG-PET is widely used in cancer, its role in gastric cancer (GC) is still controversial due to variable [F]fluorodeoxyglucose ([F]FDG) uptake. Here, we sought to develop a genetic signature to predict high FDG-avid GC to plan individualized PET and investigate the molecular landscape of GC and its association with glucose metabolic profiles noninvasively evaluated by [F]FDG-PET.

METHODS

Based on a genetic signature, PETscore, representing [F]FDG avidity, was developed by imaging data acquired from thirty patient-derived xenografts (PDX). The PETscore was validated by [F]FDG-PET data and gene expression data of human GC. The PETscore was associated with genomic and transcriptomic profiles of GC using The Cancer Genome Atlas.

RESULTS

Five genes, PLS1, PYY, HBQ1, SLC6A5, and NAT16, were identified for the predictive model for [F]FDG uptake of GC. The PETscore was validated in independent PET data of human GC with qRT-PCR and RNA-sequencing. By applying PETscore on TCGA, a significant association between glucose uptake and tumor mutational burden as well as genomic alterations were identified.

CONCLUSION

Our findings suggest that molecular characteristics are underlying the diverse metabolic profiles of GC. Diverse glucose metabolic profiles may apply to precise diagnostic and therapeutic approaches for GC.

摘要

背景

尽管 FDG-PET 在癌症中得到广泛应用,但由于 [F]氟脱氧葡萄糖 ([F]FDG) 摄取的变化,其在胃癌 (GC) 中的作用仍存在争议。在这里,我们试图开发一种遗传特征来预测高 FDG 摄取的 GC,以计划个体化的 PET,并研究 GC 的分子特征及其与葡萄糖代谢谱的关联,这些关联可通过 [F]FDG-PET 无创评估。

方法

基于代表 [F]FDG 摄取率的遗传特征 PETscore,通过来自三十个人源胃癌异种移植模型 (PDX) 的成像数据进行开发。通过 [F]FDG-PET 数据和人 GC 的基因表达数据验证了 PETscore。使用癌症基因组图谱 (TCGA) 将 PETscore 与 GC 的基因组和转录组图谱相关联。

结果

确定了五个基因(PLS1、PYY、HBQ1、SLC6A5 和 NAT16),用于预测 GC [F]FDG 摄取的预测模型。通过 qRT-PCR 和 RNA-seq 在人 GC 的独立 PET 数据中验证了 PETscore。通过在 TCGA 上应用 PETscore,发现葡萄糖摄取与肿瘤突变负担以及基因组改变之间存在显著关联。

结论

我们的研究结果表明,分子特征是 GC 不同代谢谱的基础。不同的葡萄糖代谢谱可能适用于 GC 的精确诊断和治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验