Suppr超能文献

硅藻 EB 蛋白的系统发育和结构特点。

Phylogeny and structural peculiarities of the EB proteins of diatoms.

机构信息

Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.

Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.

出版信息

J Struct Biol. 2021 Sep;213(3):107775. doi: 10.1016/j.jsb.2021.107775. Epub 2021 Aug 6.

Abstract

The end-binding proteins are a family of microtubule-associated proteins; this family belongs to plus-end-tracking proteins (+TIPs) that regulate microtubule growth and stabilisation. Although the genes encoding EB proteins are found in all eukaryotic genomes, most studies of them have centred on one or another taxonomic group, without a broad comparative analysis. Here, we present a first phylogenetic analysis and a comparative analysis of domain structures of diatom EB proteins in comparison with other phyla of Chromista, red and green algae, as well as model organisms A. thaliana and H. sapiens. Phylogenetically, diatom EB proteins are separated into six clades, generally corresponding to the phylogeny of their respective organisms. The domain structure of this family is highly variable, but the CH and EBH domains responsible for binding tubulin and other MAPs are mostly conserved. Homologous modelling of the F. cylindrus EB protein shows that conserved motifs of the CH domain are positioned on the protein surface, which is necessary for their functioning. We hypothesise that high variance of the diatom C-terminal domain is caused by previously unknown interactions with a CAP-GLY motif of dynactin subunit p150. Our findings contribute to wider possibilities for further investigations of the cytoskeleton in diatoms.

摘要

末端结合蛋白是微管相关蛋白家族的一员;该家族属于正端追踪蛋白 (+TIPs),能够调节微管的生长和稳定。虽然编码 EB 蛋白的基因存在于所有真核生物的基因组中,但大多数研究都集中在一个或另一个分类群上,而没有进行广泛的比较分析。在这里,我们首次对硅藻 EB 蛋白进行了系统发育分析和结构域比较分析,与 Chromista 的其他门、红藻和绿藻以及模式生物拟南芥和人类进行了比较。系统发育分析表明,硅藻 EB 蛋白分为六个分支,通常与各自生物的系统发育相对应。该家族的结构域结构高度可变,但负责结合微管蛋白和其他 MAP 的 CH 和 EBH 结构域大多是保守的。F. cylindrus EB 蛋白的同源建模表明,CH 结构域的保守基序位于蛋白质表面,这对于它们的功能是必要的。我们假设硅藻 C 末端结构域的高度变异性是由与动力蛋白 dynactin 亚基 p150 的 CAP-GLY 基序的未知相互作用引起的。我们的研究结果为进一步研究硅藻细胞骨架提供了更广泛的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验