文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于亚甲基蓝吸附的功能化凹凸棒石:合成、表征及吸附机理

Functionalized Attapulgite for the Adsorption of Methylene Blue: Synthesis, Characterization, and Adsorption Mechanism.

作者信息

Zhang Zhifang, Gui Wenjun, Wei Jia, Cui Yanjun, Li Ping, Jia Zhilong, Kong Peng

机构信息

College of Science, Gansu Agricultural University, Lanzhou 730000, Gansu Province, China.

出版信息

ACS Omega. 2021 Jul 21;6(30):19586-19595. doi: 10.1021/acsomega.1c02111. eCollection 2021 Aug 3.


DOI:10.1021/acsomega.1c02111
PMID:34368545
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8340108/
Abstract

Attapulgite (denoted as APT, also called palygorskite) has been regarded as the green material in the "21st century world" and has attracted widespread attention due to its advantages of low cost, natural abundance, nontoxic nature, and environmental friendliness. However, the limited adsorption sites and surface charges of natural APT greatly hinder its application as an adsorbent in industrial fields. In this work, natural APT was modified with sodium humate (SA) via a facile one-step hydrothermal process to improve its adsorption capacity and systematically studied its ability to remove methylene blue (MB) from aqueous solutions. The effect of hydrothermal modification in the presence of SA on the microscopic structure, morphology, and physicochemical properties of APT was studied by field-emission scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction, and Brunauer-Emmett-Teller analyses. The adsorption properties of the modified APT toward MB were evaluated systematically. The results demonstrated that the modified APT has a high adsorption capacity of 227.27 mg/g and also shows a high removal rate up to 99.7% toward MB in a dye solution with an initial concentration of 150 mg/L, which was a 64.7% increase as compared to that of raw APT. The adsorption kinetics could be fitted to the pseudo-second-order model, while the adsorption isotherm could be well-described with the Langmuir model. It was concluded that electrostatic attraction, hydrogen-bonding interaction, and chemical association are the main driving force during the adsorption process.

摘要

凹凸棒石(记为APT,也称为坡缕石)被视为“21世纪世界”的绿色材料,因其成本低、天然储量丰富、无毒且环境友好等优点而受到广泛关注。然而,天然APT有限的吸附位点和表面电荷极大地阻碍了其在工业领域作为吸附剂的应用。在本工作中,通过简便的一步水热法用腐殖酸钠(SA)对天然APT进行改性,以提高其吸附能力,并系统地研究了其从水溶液中去除亚甲基蓝(MB)的能力。通过场发射扫描电子显微镜、傅里叶变换红外光谱、X射线衍射和布鲁诺尔-埃米特-泰勒分析研究了在SA存在下的水热改性对APT微观结构、形貌和理化性质的影响。系统评价了改性APT对MB的吸附性能。结果表明,改性APT具有227.27 mg/g的高吸附容量,在初始浓度为150 mg/L的染料溶液中对MB的去除率高达99.7%,与未改性的APT相比提高了64.7%。吸附动力学可以用准二级模型拟合,吸附等温线可以用朗缪尔模型很好地描述。得出结论,静电吸引、氢键相互作用和化学缔合是吸附过程中的主要驱动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/1e29735289ff/ao1c02111_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/4099adcafec5/ao1c02111_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/9f71170fe8d1/ao1c02111_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/8aafcb430916/ao1c02111_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/4f5125d80ae3/ao1c02111_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/49f6db40f2a6/ao1c02111_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/607618a54aba/ao1c02111_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/9eea8f31ce35/ao1c02111_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/2aafcec785e0/ao1c02111_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/c0c98b08ae02/ao1c02111_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/a0ead6094540/ao1c02111_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/25ac6a2ef7de/ao1c02111_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/1afc2d65ffa6/ao1c02111_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/1e29735289ff/ao1c02111_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/4099adcafec5/ao1c02111_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/9f71170fe8d1/ao1c02111_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/8aafcb430916/ao1c02111_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/4f5125d80ae3/ao1c02111_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/49f6db40f2a6/ao1c02111_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/607618a54aba/ao1c02111_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/9eea8f31ce35/ao1c02111_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/2aafcec785e0/ao1c02111_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/c0c98b08ae02/ao1c02111_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/a0ead6094540/ao1c02111_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/25ac6a2ef7de/ao1c02111_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/1afc2d65ffa6/ao1c02111_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9847/8340108/1e29735289ff/ao1c02111_0013.jpg

相似文献

[1]
Functionalized Attapulgite for the Adsorption of Methylene Blue: Synthesis, Characterization, and Adsorption Mechanism.

ACS Omega. 2021-7-21

[2]
Highly effective removal of Methylene Blue using functionalized attapulgite via hydrothermal process.

J Environ Sci (China). 2015-4-10

[3]
Towards a win-win chemistry: extraction of C.I. orange from Kamala fruit (), and simultaneous exercise of its peels for the removal of Methylene Blue from water.

Int J Phytoremediation. 2023

[4]
Adsorption properties of low-cost synthesized nanozeolite L for efficient removal of toxic methylene blue dye from aqueous solution.

Acta Chim Slov. 2022-6-14

[5]
Think before throw: waste chili stalk powder for facile scavenging of cationic dyes from water.

Environ Monit Assess. 2024-1-6

[6]
Adsorption performance of polydopamine-modified attapulgite granular adsorbent for methylene blue.

Water Sci Technol. 2018-1

[7]
Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization.

Int J Phytoremediation. 2022

[8]
Optimization and mechanistic approach for removal of crystal violet and methylene blue dyes activated carbon from pyrolyzed-ZnCl bamboo waste.

Int J Phytoremediation. 2024

[9]
Adsorption of methylene blue dye from aqueous solution using low-cost adsorbent: kinetic, isotherm adsorption, and thermodynamic studies.

Environ Monit Assess. 2023-5-16

[10]
Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater.

Water Res. 2014-10-2

引用本文的文献

[1]
Magnesium Silicate Honeycomb Structure on Attapulgite Clay Composite by Self-Template Method for Adsorption of Methylene Blue.

Materials (Basel). 2025-2-11

[2]
Kinetics and process optimization studies for the effective removal of cresyl fast violet dye using reusable nanosized mullite.

Sci Rep. 2024-12-31

[3]
Composites formed by layered double hydroxides with inorganic compounds: An overview of the synthesis methods and characteristics.

MethodsX. 2024-8-20

[4]
Study on the relationship between permeability coefficient and porosity, the confining and osmotic pressure of attapulgite-modified loess.

Sci Rep. 2023-9-26

[5]
Remarkable synergy between sawdust biochar and attapulgite/diatomite after co-ball milling to adsorb methylene blue.

RSC Adv. 2023-5-11

[6]
Study on the Adsorption Properties of Oxalic Acid-Modified Cordierite Honeycomb Ceramics for Neutral Red Dyes.

ACS Omega. 2023-3-20

[7]
Geotechnical Evaluation of Loess Modifications as the Sustainable Compacted Soil Liner Material in Solid Waste Landfill.

Materials (Basel). 2022-7-18

本文引用的文献

[1]
Preparation of porous adsorbent via Pickering emulsion template for water treatment: A review.

J Environ Sci (China). 2019-9-11

[2]
A novel graphene oxide-carbon nanotubes anchored α-FeOOH hybrid activated persulfate system for enhanced degradation of Orange II.

J Environ Sci (China). 2019-2-27

[3]
From waste hot-pot oil as carbon precursor to development of recyclable attapulgite/carbon composites for wastewater treatment.

J Environ Sci (China). 2018-5-24

[4]
2-Dimensional Clay/Reduced Graphene Oxide Ordered Heterostructures Dispersible in Water via a One-Step Hydrothermal Route.

J Nanosci Nanotechnol. 2018-7-1

[5]
Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals.

J Colloid Interface Sci. 2017-12-13

[6]
Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.

Ecotoxicol Environ Saf. 2017-11-22

[7]
Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms.

J Colloid Interface Sci. 2017-3-28

[8]
Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood.

J Colloid Interface Sci. 2016-1-1

[9]
Highly effective removal of Methylene Blue using functionalized attapulgite via hydrothermal process.

J Environ Sci (China). 2015-4-10

[10]
Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes.

ACS Appl Mater Interfaces. 2012-10-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索