文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Composites formed by layered double hydroxides with inorganic compounds: An overview of the synthesis methods and characteristics.

作者信息

Velázquez-Herrera Franchescoli Didier, Zarazua-Aguilar Yohuali, Garzón-Pérez Amanda S, Álvarez-Gómez Karin Monserrat, Fetter Geolar

机构信息

Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. Ciudad Universitaria, Puebla, PUE, Mexico.

Unidad Académica Profesional Acolman, Universidad Autónoma del Estado de México, Acolman, Edo Mex, Mexico.

出版信息

MethodsX. 2024 Aug 20;13:102912. doi: 10.1016/j.mex.2024.102912. eCollection 2024 Dec.


DOI:10.1016/j.mex.2024.102912
PMID:39280761
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11402166/
Abstract

Nowadays, layered double hydroxides (LDH), sometimes referred as hydrotalcite-like compounds, have gained great attention since their composition and structure can be easily modified, so that they can be implemented in multiple fields. LDH-based composite materials based on LDH exhibit tremendously improved properties such as high specific surface area, which promotes the accessibility to a greater number of LDH active sites, considerably improving their catalytic, adsorbent and biological activities. Therefore, this review summarizes and discusses the synthesis methods of composites constituted by LDH with other inorganic compounds such as zeolites, cationic clays, hydroxyapatites, among many others, and describe the resulting characteristics of the resulting composites, emphasizing the morphology. Brief descriptions of their properties and applications are also included.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/5f96651d038a/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/496035abb87c/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/36b983483cc4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/ee45b349a06c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/d9391b48360a/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/094b0be4ff76/sc2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/b5286f635580/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/51bb3dc10089/sc3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/15c000b463a4/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/4f60011e8377/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/fc39caad69ed/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/19516188f39a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/81b1223cbf4c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/9651b757fe86/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/581c33e9a94b/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/6988ee0d279b/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/9cdcc848fc4e/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/acb280c0cc40/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/e39237b8071d/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/05387675b45f/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/5f96651d038a/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/496035abb87c/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/36b983483cc4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/ee45b349a06c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/d9391b48360a/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/094b0be4ff76/sc2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/b5286f635580/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/51bb3dc10089/sc3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/15c000b463a4/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/4f60011e8377/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/fc39caad69ed/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/19516188f39a/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/81b1223cbf4c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/9651b757fe86/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/581c33e9a94b/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/6988ee0d279b/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/9cdcc848fc4e/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/acb280c0cc40/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/e39237b8071d/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/05387675b45f/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b43f/11402166/5f96651d038a/gr16.jpg

相似文献

[1]
Composites formed by layered double hydroxides with inorganic compounds: An overview of the synthesis methods and characteristics.

MethodsX. 2024-8-20

[2]
Facile synthesis of rose-like composites of zeolites and layered double hydroxides: Growth mechanism and enhanced properties.

Chemosphere. 2022-12

[3]
Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review.

J Environ Manage. 2021-10-1

[4]
Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook.

Bioresour Technol. 2020-9-17

[5]
Recent Advances in Composites of Graphene and Layered Double Hydroxides for Water Remediation: A Review.

Chem Asian J. 2019-8-1

[6]
Recent innovations in functionalized layered double hydroxides: Fabrication, characterization, and industrial applications.

Adv Colloid Interface Sci. 2020-9

[7]
Progress in layered double hydroxides (LDHs): Synthesis and application in adsorption, catalysis and photoreduction.

Sci Total Environ. 2024-2-20

[8]
Hydrotalcite-quinolinate composites as catalysts in a coupling reaction.

Chem Cent J. 2016-10-31

[9]
Multifaceted potential applicability of hydrotalcite-type anionic clays from green chemistry to environmental sustainability.

Chemosphere. 2022-11

[10]
Scalable preparation of alginate templated-layered double hydroxide mesoporous composites with enhanced surface areas and surface acidities.

J Nanosci Nanotechnol. 2011-4

本文引用的文献

[1]
Montmorillonite modified Ni/Mg/Al ternary layered double hydroxide nanoflowers with enhanced adsorption features.

Heliyon. 2023-10-14

[2]
Progress in pre-treatment and extraction of organic and inorganic pollutants by layered double hydroxide for trace-level analysis.

Environ Res. 2022-11

[3]
Layered double hydroxide-based nanomaterials for biomedical applications.

Chem Soc Rev. 2022-7-18

[4]
Preparation and application of layered double hydroxide nanosheets.

RSC Adv. 2021-7-9

[5]
Functionalized Attapulgite for the Adsorption of Methylene Blue: Synthesis, Characterization, and Adsorption Mechanism.

ACS Omega. 2021-7-21

[6]
Synergistic Effect of NiLDH@YZ Hybrid and Mechanochemical Agitation on Glaser Homocoupling Reaction.

Chemistry. 2021-6-16

[7]
In-situ stabilization of Cd by sepiolite co-applied with organic amendments in contaminated soils.

Ecotoxicol Environ Saf. 2021-1-15

[8]
Synthesis and characterization of Ethiopian kaolin for the removal of basic yellow (BY 28) dye from aqueous solution as a potential adsorbent.

Heliyon. 2020-9-19

[9]
Adsorption of Cr (VI) onto micro- and nanoparticles of palygorskite in aqueous solutions: Effects of pH and humic acid.

Ecotoxicol Environ Saf. 2020-9-2

[10]
Recent innovations in functionalized layered double hydroxides: Fabrication, characterization, and industrial applications.

Adv Colloid Interface Sci. 2020-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索