Hamachi Leslie S, Rau Daniel A, Arrington Clay B, Sheppard Daylan T, Fortman David J, Long Timothy E, Williams Christopher B, Dichtel William R
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States.
ACS Appl Mater Interfaces. 2021 Aug 18;13(32):38680-38687. doi: 10.1021/acsami.1c09373. Epub 2021 Aug 9.
Relative to other additive manufacturing modalities, vat photopolymerization (VP) offers designers superior surface finish, feature resolution, and throughput. However, poor interlayer network formation can limit a VP-printed part's tensile strength along the build axis. We demonstrate that the incorporation of carbamate bonds capable of undergoing dissociative exchange reactions provides improved interlayer network formation in VP-printed urethane acrylate polymers. In the presence of dibutyltin dilaurate catalyst, the exchange of these carbamate bonds enables rapid stress relaxation with an activation energy of 133 kJ/mol, consistent with a dissociative bond exchange process. Annealed XY tensile samples containing a catalyst demonstrate a 25% decrease in Young's modulus, attributed to statistical changes in network topology, while samples without a catalyst show no observable effect. Annealed ZX tensile samples printed with layers perpendicular to tensile load demonstrate an increase in elongation at break, indicative of self-healing. The strain at break for samples containing a catalyst increases from 33.9 to 56.0% after annealing but decreases from 48.1 to 32.1% after annealing in samples without a catalyst. This thermally activated bond exchange process improves the performance of VP-printed materials self-healing across layers and provides a means to change Young's modulus after printing. Thus, the incorporation of carbamate bonds and appropriate catalysts in the VP-printing process provides a robust platform for enhancing material properties and performance.
相对于其他增材制造方式,光固化3D打印(VP)为设计师提供了卓越的表面光洁度、特征分辨率和产量。然而,层间网络形成不佳会限制VP打印部件沿构建轴的拉伸强度。我们证明,引入能够进行解离交换反应的氨基甲酸酯键可改善VP打印的聚氨酯丙烯酸酯聚合物中的层间网络形成。在二月桂酸二丁基锡催化剂存在下,这些氨基甲酸酯键的交换能够实现快速应力松弛,活化能为133 kJ/mol,这与解离键交换过程一致。含有催化剂的XY拉伸样品经过退火后,杨氏模量降低了25%,这归因于网络拓扑结构的统计变化,而没有催化剂的样品则没有明显变化。垂直于拉伸载荷打印层的ZX拉伸样品经过退火后,断裂伸长率增加,表明具有自愈能力。含有催化剂的样品在退火后的断裂应变从33.9%增加到56.0%,而没有催化剂的样品在退火后的断裂应变从48.1%降低到32.1%。这种热活化键交换过程改善了VP打印材料的跨层自愈性能,并提供了一种在打印后改变杨氏模量的方法。因此,在VP打印过程中引入氨基甲酸酯键和合适的催化剂为增强材料性能和性能提供了一个强大的平台。