Xu Li-Cheng, Zhang Shuo-Qing, Li Xin, Tang Miao-Jiong, Xie Pei-Pei, Hong Xin
Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.
Angew Chem Int Ed Engl. 2021 Oct 11;60(42):22804-22811. doi: 10.1002/anie.202106880. Epub 2021 Sep 12.
Asymmetric hydrogenation of olefins is one of the most powerful asymmetric transformations in molecular synthesis. Although several privileged catalyst scaffolds are available, the catalyst development for asymmetric hydrogenation is still a time- and resource-consuming process due to the lack of predictive catalyst design strategy. Targeting the data-driven design of asymmetric catalysis, we herein report the development of a standardized database that contains the detailed information of over 12000 literature asymmetric hydrogenations of olefins. This database provides a valuable platform for the machine learning applications in asymmetric catalysis. Based on this database, we developed a hierarchical learning approach to achieve predictive machine leaning model using only dozens of enantioselectivity data with the target olefin, which offers a useful solution for the few-shot learning problem and will facilitate the reaction optimization with new olefin substrate in catalysis screening.
烯烃的不对称氢化是分子合成中最强大的不对称转化反应之一。尽管有几种优势催化剂骨架可供使用,但由于缺乏预测性的催化剂设计策略,不对称氢化反应的催化剂开发仍然是一个耗时且耗费资源的过程。针对数据驱动的不对称催化设计,我们在此报告了一个标准化数据库的开发,该数据库包含超过12000例文献报道的烯烃不对称氢化反应的详细信息。该数据库为不对称催化中的机器学习应用提供了一个有价值的平台。基于此数据库,我们开发了一种分层学习方法,仅使用与目标烯烃相关的几十例对映选择性数据来实现预测性机器学习模型,这为少样本学习问题提供了一个有用的解决方案,并将有助于在催化筛选中使用新的烯烃底物进行反应优化。