Suppr超能文献

基于数据驱动的烯烃过渡金属催化不对称氢化反应洞察

Data-Driven Insights into the Transition-Metal-Catalyzed Asymmetric Hydrogenation of Olefins.

作者信息

Singh Sukriti, Hernández-Lobato José Miguel

机构信息

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K.

出版信息

J Org Chem. 2024 Sep 6;89(17):12467-12478. doi: 10.1021/acs.joc.4c01396. Epub 2024 Aug 16.

Abstract

The transition-metal-catalyzed asymmetric hydrogenation of olefins is one of the key transformations with great utility in various industrial applications. The field has been dominated by the use of noble metal catalysts, such as iridium and rhodium. The reactions with the earth-abundant cobalt metal have increased only in recent years. In this work, we analyze the large amount of literature data available on iridium- and rhodium-catalyzed asymmetric hydrogenation. The limited data on reactions using Co catalysts are then examined in the context of Ir and Rh to obtain a better understanding of the reactivity pattern. A detailed data-driven study of the types of olefins, ligands, and reaction conditions such as solvent, temperature, and pressure is carried out. Our analysis provides an understanding of the literature trends and demonstrates that only a few olefin-ligand combinations or reaction conditions are frequently used. The knowledge of this bias in the literature data toward a certain group of substrates or reaction conditions can be useful for practitioners to design new reaction data sets that are suitable to obtain meaningful predictions from machine-learning models.

摘要

过渡金属催化的烯烃不对称氢化反应是各种工业应用中具有重要实用价值的关键转化反应之一。该领域一直以使用贵金属催化剂(如铱和铑)为主导。与储量丰富的钴金属的反应只是近年来才有所增加。在这项工作中,我们分析了大量关于铱和铑催化不对称氢化反应的文献数据。然后,在铱和铑的背景下研究了使用钴催化剂反应的有限数据,以便更好地理解反应活性模式。我们对烯烃类型、配体以及反应条件(如溶剂、温度和压力)进行了详细的数据驱动研究。我们的分析有助于理解文献趋势,并表明只有少数烯烃 - 配体组合或反应条件被频繁使用。了解文献数据中对特定底物或反应条件的这种偏向,对于从业者设计新的反应数据集很有用,这些数据集适合从机器学习模型中获得有意义的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1360/11382158/34c0cfd3bd77/jo4c01396_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验