Suppr超能文献

制造工艺对碳纳米管增强碳纤维增强塑料(CFRP)与Ti6Al4V多材料接头的结构健康监测及力学行为的影响

Influence of Manufacturing Process in Structural Health Monitoring and Mechanical Behaviour of CNT Reinforced CFRP and Ti6Al4V Multi-Material Joints.

作者信息

Dasilva S, Jimenez-Suarez A, Rodríguez E, Prolongo S G

机构信息

Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933 Madrid, Spain.

Advanced Materials Department, Aimen Technology Center, Polígono Industrial de Cataboi, SUR-PPI-2 (Sector 2), Parcela 3, O Porriño, 36418 Pontevedra, Spain.

出版信息

Polymers (Basel). 2021 Jul 28;13(15):2488. doi: 10.3390/polym13152488.

Abstract

Co-cured multi-material metal-polymer composites joints are recent interesting structural materials for locally reinforcing a structure in specific areas of high structural requirements, in fibre metal laminates and lightweight high-performance structures. The influence of manufacturing processes on the morphological quality and their mechanical behaviour has been analysed on joints constituted by sol-gel treated Ti6Al4V and carbon fibre reinforced composites (CFRP). In addition, carbon nanotubes (CNT) have been added to an epoxy matrix to develop multiscale CNT reinforced CFRP, increasing their electrical conductivity and allowing their structural health monitoring (SHM). Mechanical behaviour of manufactured multi-material joints is analysed by the measurement of lap shear strength (LSS) and Mode I adhesive fracture energy (GIC) using double cantilever beam specimens (DCB). It has been proven that the addition of MWCNT improves the conductivity of the multi-material joints, even including surface treatment with sol-gel, allowing structural health monitoring (SHM). Moreover, it has been proven that the manufacturing process affects the polymer interface thickness and the porosity, which strongly influence the mechanical and SHM behaviour. On the one hand, the increase in the adhesive layer thickness leads to a great improvement in mode I fracture energy. On the other hand, a lower interface thickness enhances the SHM sensibility due to the proximity between MWCNT and layers of conductive substrates, carbon woven and titanium alloy.

摘要

共固化多材料金属-聚合物复合材料接头是近年来备受关注的结构材料,可用于在纤维金属层压板和轻质高性能结构中对结构要求较高的特定区域进行局部增强。在由溶胶-凝胶处理的Ti6Al4V和碳纤维增强复合材料(CFRP)构成的接头上,分析了制造工艺对其形态质量及其力学行为的影响。此外,已将碳纳米管(CNT)添加到环氧树脂基体中,以开发多尺度CNT增强CFRP,提高其电导率并实现其结构健康监测(SHM)。通过使用双悬臂梁试样(DCB)测量搭接剪切强度(LSS)和I型胶粘剂断裂能(GIC),分析了制造的多材料接头的力学行为。已证明,添加多壁碳纳米管(MWCNT)可提高多材料接头的电导率,即使包括溶胶-凝胶表面处理,也能实现结构健康监测(SHM)。此外,已证明制造工艺会影响聚合物界面厚度和孔隙率,这对力学行为和结构健康监测行为有很大影响。一方面,胶粘剂层厚度的增加会导致I型断裂能有很大提高。另一方面,由于MWCNT与导电基材层、碳纤维织物和钛合金层之间的距离较近,较低的界面厚度会增强结构健康监测的灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44d9/8347459/b2f13cf731bf/polymers-13-02488-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验