Nagaraja Sriharish Malebennur, Henning Sven, Ilisch Sybill, Beiner Mario
Fraunhofer Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, Walter-Hülse-Str. 1, 06120 Halle (Saale), Germany.
Trinseo Deutschland GmbH, E 17, 06258 Schkopau, Germany.
Polymers (Basel). 2021 Jul 31;13(15):2534. doi: 10.3390/polym13152534.
A comparative study focusing on the visco-elastic properties of two series of carbon black filled composites with natural rubber (NR) and its blends with butadiene rubber (NR-BR) as matrices is reported. Strain sweeps at different temperatures are performed. Filler network-related contributions to reinforcement (ΔG') are quantified by the classical Kraus equation while a modified Kraus equation is used to quantify different contributions to dissipation (ΔGD″, ΔGF″). Results indicate that the filler network is visco-elastic in nature and that it is causing a major part of the composite dissipation at small and intermediate strain amplitudes. The temperature dependence of filler network-related reinforcement and dissipation contributions is found to depend significantly on the rubber matrix composition. We propose that this is due to differences in the chemical composition of the glassy rubber bridges connecting filler particles since the filler network topology is seemingly not significantly influenced by the rubber matrix for a given filler content. The underlying physical picture explains effects in both dissipation and reinforcement. It predicts that these glassy rubber bridges will soften sequentially at temperatures much higher than the bulk Tg of the corresponding rubber. This is hypothetically due to rubber-filler interactions at interfaces resulting in an increased packing density in the glassy rubber related to the reduction of free volume. From a general perspective, this study provides deeper insights towards the molecular origin of reinforcement and dissipation in rubber composites.
本文报道了一项对比研究,该研究聚焦于以天然橡胶(NR)及其与丁二烯橡胶的共混物(NR-BR)为基体的两个系列炭黑填充复合材料的粘弹性性能。进行了不同温度下的应变扫描。通过经典的克劳斯方程对与填料网络相关的增强作用贡献(ΔG')进行量化,而使用修正的克劳斯方程对耗散作用的不同贡献(ΔGD″,ΔGF″)进行量化。结果表明,填料网络本质上是粘弹性的,并且在小应变和中等应变幅度下,它是复合材料耗散的主要原因。发现与填料网络相关的增强作用和耗散作用贡献的温度依赖性显著取决于橡胶基体的组成。我们认为这是由于连接填料颗粒的玻璃态橡胶桥的化学组成不同所致,因为对于给定的填料含量,填料网络拓扑结构似乎并未受到橡胶基体的显著影响。潜在的物理图像解释了耗散和增强作用中的各种效应。它预测这些玻璃态橡胶桥将在比相应橡胶的本体玻璃化转变温度高得多的温度下依次软化。这被假设是由于界面处的橡胶-填料相互作用导致玻璃态橡胶中与自由体积减少相关的堆积密度增加。从总体角度来看,本研究为橡胶复合材料中增强作用和耗散作用的分子起源提供了更深入的见解。