文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

二齿四酰胺衍生物的 1,10-二氮杂-18-冠-6 和丙二酸-Synthesis 和用作离子选择性膜电极中的离子载体。

Dipodal Tetraamide Derivatives of 1,10-Diaza-18-Crown-6 and Alkylmalonic Acids-Synthesis and Use as Ionophores in Ion Selective Membrane Electrodes.

机构信息

Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland.

出版信息

Sensors (Basel). 2021 Jul 22;21(15):4984. doi: 10.3390/s21154984.


DOI:10.3390/s21154984
PMID:34372221
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8348374/
Abstract

Novel dipodal derivatives of an 18-membered diaza-crown ether with two diamide chains featuring methylmalonic or butylmalonic acid residues were obtained and tested as ionophores in ion-selective plasticized membrane electrodes. The objective of the study was to identify measurement conditions which ensure the most favorable performance for magnesium ion-selective electrodes. The relationship between the molar lipophilic anion salt-to-ionophore ratio and selectivity of electrodes was examined. The best result was obtained for the conventional electrode containing Mg2 ionophore. Calculated selectivity coefficients were as follows: log = -2.77, log = -3.46 and log = -2.24 (SSM, 1M).

摘要

新型的具有两个二酰胺链的 18 元氮杂冠醚的二足衍生物,带有甲基丙二酸或丁基丙二酸残基,被用作离子选择性塑化膜电极中的离子载体进行测试。该研究的目的是确定确保镁离子选择性电极性能最有利的测量条件。研究了摩尔亲脂性阴离子盐与载体的比例与电极选择性之间的关系。最好的结果是使用含有 Mg2 离子载体的常规电极获得的。计算出的选择性系数如下:log = -2.77,log = -3.46 和 log = -2.24(SSM,1M)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/a1745fc6e32e/sensors-21-04984-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/244dccab09ff/sensors-21-04984-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/286d91a9d1c1/sensors-21-04984-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/abd7888d791b/sensors-21-04984-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/22a77f8324e7/sensors-21-04984-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/407518b300a9/sensors-21-04984-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/8ec0b202988c/sensors-21-04984-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/d708170a478f/sensors-21-04984-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/a34f8b74a2db/sensors-21-04984-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/8b97de525c80/sensors-21-04984-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/afa5c8c735f8/sensors-21-04984-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/658e3c4fadb6/sensors-21-04984-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/41c32700e6ce/sensors-21-04984-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/d97d49496c64/sensors-21-04984-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/a634b1a95622/sensors-21-04984-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/e25992688508/sensors-21-04984-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/a1745fc6e32e/sensors-21-04984-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/244dccab09ff/sensors-21-04984-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/286d91a9d1c1/sensors-21-04984-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/abd7888d791b/sensors-21-04984-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/22a77f8324e7/sensors-21-04984-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/407518b300a9/sensors-21-04984-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/8ec0b202988c/sensors-21-04984-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/d708170a478f/sensors-21-04984-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/a34f8b74a2db/sensors-21-04984-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/8b97de525c80/sensors-21-04984-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/afa5c8c735f8/sensors-21-04984-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/658e3c4fadb6/sensors-21-04984-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/41c32700e6ce/sensors-21-04984-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/d97d49496c64/sensors-21-04984-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/a634b1a95622/sensors-21-04984-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/e25992688508/sensors-21-04984-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f27/8348374/a1745fc6e32e/sensors-21-04984-g015.jpg

相似文献

[1]
Dipodal Tetraamide Derivatives of 1,10-Diaza-18-Crown-6 and Alkylmalonic Acids-Synthesis and Use as Ionophores in Ion Selective Membrane Electrodes.

Sensors (Basel). 2021-7-22

[2]
Double-armed crown ethers for calcium optical sensors.

Talanta. 2009-6-15

[3]
Synthesis and characterization of covalently immobilized bis-crown ether based potassium ionophore.

Analyst. 2005-1

[4]
New bis(azobenzocrown)s with dodecylmethylmalonyl linkers as ionophores for sodium selective potentiometric sensors.

J Incl Phenom Macrocycl Chem. 2016

[5]
Synthesis and characterization of monoazathiacrown ethers as ionophores for polymeric membrane silver-selective electrodes.

Talanta. 2010-2-6

[6]
Design and synthesis of sodium ion-selective ionophores based on 16-crown-5 derivatives for an ion-selective electrode.

Anal Chem. 1996-1-1

[7]
Comparative performance of 14-crown-4 derivatives as lithium-selective electrodes.

Analyst. 1991-2

[8]
Electrochemical methods for the determination of the diffusion coefficient of ionophores and ionophore-ion complexes in plasticized PVC membranes.

Analyst. 2008-5

[9]
Coated-wire electrodes containing polymer immobilized ionophores blended with poly(vinyl chloride).

Talanta. 1994-9

[10]
Primary amine drug selective electrodes with special crown ethers as neutral carriers.

Sci China B. 1990-12

本文引用的文献

[1]
Measurement of cations, anions, and acetate in serum, urine, cerebrospinal fluid, and tissue by ion chromatography.

Physiol Rep. 2018-4

[2]
Equilibration Time of Solid Contact Ion-Selective Electrodes.

Anal Chem. 2015-7-7

[3]
Functionalized ZnO nanorod-based selective magnesium ion sensor for intracellular measurements.

Biosens Bioelectron. 2010-8-20

[4]
Magnesium-tetrazaporphyrin incorporated PVC matrix as a new material for fabrication of Mg(2+) selective potentiometric sensor.

Talanta. 2004-7-8

[5]
A simple spectrofluorometric assay to measure total intracellular magnesium by a hydroxyquinoline derivative.

J Fluoresc. 2009-1

[6]
Speciation of magnesium in rat plasma using capillary electrophoresis-inductively coupled plasma-atomic emission spectrometry.

Electrophoresis. 2008-4

[7]
Serum ionized magnesium levels and ionized calcium-to-magnesium ratios in adult patients with sickle cell anemia.

Am J Hematol. 2004-11

[8]
Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

Anal Chem. 2001-9-1

[9]
Characterization procedure for ion-selective electrode assays of magnesium activity in aqueous solutions of physiological composition.

Clin Chem. 1993-5

[10]
Ion-selective membrane electrodes for clinical use.

Clin Chem. 1986-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索