Suppr超能文献

双向深度神经网络整合 RNA 和 DNA 数据以预测肝细胞癌患者的预后。

Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma.

机构信息

Department of Oncology, Pidu District People's Hospital, Chengdu, Sichuan, China.

Department of General Surgery, Pidu District People's Hospital, Chengdu, Sichuan, China.

出版信息

Future Oncol. 2021 Nov;17(33):4481-4495. doi: 10.2217/fon-2021-0659. Epub 2021 Aug 10.

Abstract

Individualized patient profiling is instrumental for personalized management in hepatocellular carcinoma (HCC). This study built a model based on bidirectional deep neural networks (BiDNNs), an unsupervised machine-learning approach, to integrate multi-omics data and predict survival in HCC. DNA methylation and mRNA expression data for HCC samples from the The Cancer Genome Atlas database were integrated using BiDNNs. With optimal clusters as labels, a support vector machine model was developed to predict survival. Using the BiDNN-based model, samples were clustered into two survival subgroups. The survival subgroup classification was an independent prognostic factor. BiDNNs were superior to multimodal autoencoders.  This study constructed and validated a BiDNN-based model for predicting prognosis in HCC, with implications for individualized therapies in HCC.

摘要

个体化患者分析对于肝细胞癌 (HCC) 的个性化管理至关重要。本研究构建了一个基于双向深度神经网络 (BiDNN) 的模型,这是一种无监督机器学习方法,用于整合多组学数据并预测 HCC 的生存情况。 使用 BiDNN 整合来自癌症基因组图谱数据库的 HCC 样本的 DNA 甲基化和 mRNA 表达数据。以最佳聚类作为标签,开发支持向量机模型来预测生存。 使用基于 BiDNN 的模型,将样本聚类为两个生存亚组。生存亚组分类是一个独立的预后因素。BiDNN 优于多模态自动编码器。 本研究构建并验证了一种基于 BiDNN 的 HCC 预后预测模型,为 HCC 的个体化治疗提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验