Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
Department of Oncology, Zibo Maternal and Child Health Hospital, Zibo 255000, Shandong, China.
Aging (Albany NY). 2020 Jul 9;12(13):13502-13517. doi: 10.18632/aging.103454.
In this study, we constructed a new survival model using mRNA expression-based stemness index (mRNAsi) for prognostic prediction in hepatocellular carcinoma (HCC). Weighted correlation network analysis (WGCNA) of HCC transcriptome data (374 HCC and 50 normal liver tissue samples) from the TCGA database revealed 7498 differentially expressed genes (DEGs) that clustered into seven gene modules. LASSO regression analysis of the top two gene modules identified , , , and as the top five mRNAsi-related genes. We constructed our survival model with these five genes and tested its performance using 243 HCC and 202 normal liver samples from the ICGC database. Kaplan-Meier survival curve and receive operating characteristic curve analyses showed that the survival model accurately predicted the prognosis and survival of high- and low-risk HCC patients with high sensitivity and specificity. The expression of these five genes was significantly higher in the HCC tissues from the TCGA, ICGC, and GEO datasets (GSE25097 and GSE14520) than in normal liver tissues. These findings demonstrate that a new survival model derived from five strongly correlating mRNAsi-related genes provides highly accurate prognoses for HCC patients.
在这项研究中,我们构建了一个新的基于 mRNA 表达的干细胞指数 (mRNAsi) 的生存模型,用于预测肝细胞癌 (HCC) 的预后。TCGA 数据库中 HCC 转录组数据 (374 个 HCC 和 50 个正常肝组织样本) 的加权相关网络分析 (WGCNA) 显示 7498 个差异表达基因 (DEGs) 聚类为七个基因模块。对前两个基因模块的 LASSO 回归分析确定了 、 、 、 和 作为五个与 mRNAsi 相关的最重要基因。我们使用来自 ICGC 数据库的 243 个 HCC 和 202 个正常肝样本构建了我们的生存模型,并使用该模型进行了性能测试。Kaplan-Meier 生存曲线和接收者操作特征曲线分析表明,该生存模型能够准确预测高风险和低风险 HCC 患者的预后和生存情况,具有较高的敏感性和特异性。在 TCGA、ICGC 和 GEO 数据集 (GSE25097 和 GSE14520) 的 HCC 组织中,这五个基因的表达明显高于正常肝组织。这些发现表明,源自五个具有强烈相关性的 mRNAsi 相关基因的新生存模型为 HCC 患者提供了高度准确的预后。