Besson Florent L, Fernandez Brice, Faure Sylvain, Mercier Olaf, Seferian Andrei, Mussot Sacha, Levy Antonin, Parent Florence, Bulifon Sophie, Jais Xavier, Montani David, Mitilian Delphine, Fadel Elie, Planchard David, Ghigna-Bellinzoni Maria-Rosa, Comtat Claude, Lebon Vincent, Durand Emmanuel
Applications and Workflow, GE Healthcare.
Laboratoire de Mathématiques d'Orsay, CNRS, Université Paris-Saclay, Orsay.
Clin Nucl Med. 2021 Sep 1;46(9):e440-e447. doi: 10.1097/RLU.0000000000003680.
The aim of this study was to study the feasibility of a fully integrated multiparametric imaging framework to characterize non-small cell lung cancer (NSCLC) at 3-T PET/MRI.
An 18F-FDG PET/MRI multiparametric imaging framework was developed and prospectively applied to 11 biopsy-proven NSCLC patients. For each tumor, 12 parametric maps were generated, including PET full kinetic modeling, apparent diffusion coefficient, T1/T2 relaxation times, and DCE full kinetic modeling. Gaussian mixture model-based clustering was applied at the whole data set level to define supervoxels of similar multidimensional PET/MRI behaviors. Taking the multidimensional voxel behaviors as input and the supervoxel class as output, machine learning procedure was finally trained and validated voxelwise to reveal the dominant PET/MRI characteristics of these supervoxels at the whole data set and individual tumor levels.
The Gaussian mixture model-based clustering clustering applied at the whole data set level (17,316 voxels) found 3 main multidimensional behaviors underpinned by the 12 PET/MRI quantitative parameters. Four dominant PET/MRI parameters of clinical relevance (PET: k2, k3 and DCE: ve, vp) predicted the overall supervoxel behavior with 97% of accuracy (SD, 0.7; 10-fold cross-validation). At the individual tumor level, these dimensionality-reduced supervoxel maps showed mean discrepancy of 16.7% compared with the original ones.
One-stop-shop PET/MRI multiparametric quantitative analysis of NSCLC is clinically feasible. Both PET and MRI parameters are useful to characterize the behavior of tumors at the supervoxel level. In the era of precision medicine, the full capabilities of PET/MRI would give further insight of the characterization of NSCLC behavior, opening new avenues toward image-based personalized medicine in this field.
本研究的目的是探讨在3-T正电子发射断层扫描/磁共振成像(PET/MRI)中使用完全集成的多参数成像框架来表征非小细胞肺癌(NSCLC)的可行性。
开发了一种18F-氟代脱氧葡萄糖(18F-FDG)PET/MRI多参数成像框架,并前瞻性地应用于11例经活检证实的NSCLC患者。对于每个肿瘤,生成了12个参数图,包括PET全动力学建模、表观扩散系数、T1/T2弛豫时间以及动态对比增强(DCE)全动力学建模。基于高斯混合模型的聚类方法应用于整个数据集层面,以定义具有相似多维PET/MRI行为的超体素。以多维体素行为作为输入,超体素类别作为输出,最终进行机器学习过程,并在体素层面进行训练和验证,以揭示这些超体素在整个数据集和个体肿瘤层面的主要PET/MRI特征。
在整个数据集层面(17316个体素)应用基于高斯混合模型的聚类方法,发现由12个PET/MRI定量参数所支撑的3种主要多维行为。4个具有临床相关性的主要PET/MRI参数(PET:k2、k3以及DCE:ve、vp)预测总体超体素行为的准确率为97%(标准差,0.7;10折交叉验证)。在个体肿瘤层面,这些降维后的超体素图与原始图相比平均差异为16.7%。
NSCLC的一站式PET/MRI多参数定量分析在临床上是可行的。PET和MRI参数均有助于在超体素层面表征肿瘤行为。在精准医学时代,PET/MRI的全部功能将进一步深入了解NSCLC行为的特征,为该领域基于图像的个性化医疗开辟新途径。