Suppr超能文献

全视野水平的快速4D-PET参数成像计算:专用软件解决方案PET KinetiX在模拟条件下的可靠性

Fast 4D-PET parametric imaging computation at the whole field of view level: Reliability under simulated conditions of PET KinetiX, a dedicated software solution.

作者信息

Faure Sylvain, Paillet Adrien, Comtat Claude, Besson Florent L

机构信息

Laboratoire de Mathématique d'Orsay, CNRS/INRIA ParMA Université Paris-Saclay, Orsay, France.

CEA/Inserm/CNRS/Université Paris-Saclay, BioMaps, Orsay, France.

出版信息

Eur J Nucl Med Mol Imaging. 2025 Apr 21. doi: 10.1007/s00259-025-07285-0.

Abstract

PURPOSE

The reliability of a new academic software, PET KinetiX, designed for fast parametric 4D-PET imaging computation, is assessed under simulated conditions.

METHODS

4D-PET data were simulated using the XCAT digital phantom and realistic time-activity curves (ground truth). Four hundred analytical simulations were reconstructed using CASToR, an open-source software for tomographic reconstruction, replicating the clinical characteristics of two available PET systems with short and long axial fields of view (SAFOV and LAFOV). A total of 2,800 Patlak and 2TCM kinetic parametric maps of F-FDG were generated using PET KinetiX. The mean biases and standard deviations of the kinetic parametric maps were computed for each tissue label and compared to the biases of unprocessed SUV data. Additionally, the mean absolute ratio of kinetic-to-SUV contrast-to-noise ratio (CNR) was estimated for each tissue structure, along with the corresponding standard deviations.

RESULTS

The K and v parametric maps produced by PET KinetiX faithfully reproduced the predefined multi-tissue structures of the XCAT digital phantom for both Patlak and 2TCM models. Image definition was influenced by the 4D-PET input data: a higher number of iterations resulted in sharper rendering and higher standard deviations in PET signal characteristics. Biases relative to the ground truth varied across tissue structures and hardware configurations, similarly to unprocessed SUV data. In most tissue structures, Patlak kinetic-to-SUV CNR ratios exceeded 1 for both SAFOV and LAFOV configurations. The highest kinetic-to-SUV CNR ratio was observed in 2TCM k₃ maps within tumor regions.

CONCLUSION

PET KinetiX currently generates K and v parametric maps that are qualitatively comparable to unprocessed SUV data, with improved CNR in most cases. The 2TCM k₃ parametric maps for tumor structures exhibited the highest CNR enhancement, warranting further evaluation across different anatomical regions and radiotracer applications.

摘要

目的

在模拟条件下评估一款专为快速参数化4D-PET成像计算设计的新型学术软件PET KinetiX的可靠性。

方法

使用XCAT数字体模和逼真的时间-活度曲线(真实情况)模拟4D-PET数据。使用CASToR(一种用于断层重建的开源软件)对400次分析模拟进行重建,该软件复制了两种具有短和长轴向视野(SAFOV和LAFOV)的现有PET系统的临床特征。使用PET KinetiX生成了总共2800个¹⁸F-FDG的Patlak和2TCM动力学参数图。计算每个组织标签的动力学参数图的平均偏差和标准差,并与未处理的SUV数据的偏差进行比较。此外,估计每个组织结构的动力学与SUV对比噪声比(CNR)的平均绝对比值以及相应的标准差。

结果

PET KinetiX生成的K和v参数图忠实地再现了XCAT数字体模中Patlak和2TCM模型的预定义多组织结构。图像清晰度受4D-PET输入数据影响:更多的迭代次数会导致PET信号特征的渲染更清晰且标准差更高。与真实情况相比的偏差因组织结构和硬件配置而异,与未处理的SUV数据类似。在大多数组织结构中,SAFOV和LAFOV配置下的Patlak动力学与SUV的CNR比值均超过1。在肿瘤区域的2TCM k₃图中观察到最高的动力学与SUV的CNR比值。

结论

PET KinetiX目前生成的K和v参数图在质量上与未处理的SUV数据相当,在大多数情况下CNR有所改善。肿瘤结构的2TCM k₃参数图表现出最高的CNR增强,值得在不同解剖区域和放射性示踪剂应用中进行进一步评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验