Sun Yidong, Wang Xingpu, Fu Qiang, Pan Chunxu
School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China.
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
ACS Appl Mater Interfaces. 2021 Aug 25;13(33):39331-39340. doi: 10.1021/acsami.1c09650. Epub 2021 Aug 10.
It is of great significance to construct heterojunctions using industrially produced co-catalysts. The direct Z-scheme composite photocatalyst provides an effective separation of photogenerated carriers. Herein, a kind of novel 2D/3D direct Z-scheme NiFe-LDH/ZnCdS is prepared. Compared with fresh catalysts, the NiFe-layered double hydroxide (LDH)/ZnCdS composite exhibits advantages including excellent visible light response ability and photoelectric performance and improved H evolution rate by 11.6 times. Combining with theoretical calculations, ESR, XPS, and experimental results, the direct Z-scheme mechanism of the photocatalytic reaction is proposed. There is a channel for electron transfer between ZnCdS and NiFe-LDH, and the electrons of ZnCdS directly combine with the valence band holes of NiFe-LDH. Finally, the electrons remaining on NiFe-LDH can reduce H to generate H. This process effectively achieves separation of photogenerated carriers and increases photocatalytic H evolution.
使用工业生产的助催化剂构建异质结具有重要意义。直接Z型复合光催化剂能有效分离光生载流子。在此,制备了一种新型的二维/三维直接Z型NiFe-LDH/ZnCdS。与新鲜催化剂相比,NiFe层状双氢氧化物(LDH)/ZnCdS复合材料具有优异的可见光响应能力和光电性能等优势,析氢速率提高了11.6倍。结合理论计算、电子顺磁共振(ESR)、X射线光电子能谱(XPS)和实验结果,提出了光催化反应的直接Z型机理。ZnCdS和NiFe-LDH之间存在电子转移通道,ZnCdS的电子直接与NiFe-LDH的价带空穴结合。最后,留在NiFe-LDH上的电子可以将H还原生成H。这一过程有效地实现了光生载流子的分离并提高了光催化析氢性能。