Zhang Yueyang, Liu Hai, Yang Mengxue, Jin Zhiliang
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
J Colloid Interface Sci. 2023 Jan 15;630(Pt B):99-110. doi: 10.1016/j.jcis.2022.10.042. Epub 2022 Oct 17.
It is an effective way to improve the photocatalytic hydrogen evolution activity by constructing a unique structure and tuning the morphology of catalysts. On the one hand, ZIF-67 was used as a precursor to prepare CoO derivatives with different morphologies [CoO (Porous Polyhedron) and CoOdb (Hollow Double-Shelled Polyhedron)]. The hollow polyhedron have the advantages of large specifie surface area, low density, stable three-dimensional spatial structure and excellent electron transport channels, which provide great advantages for the enhancement of photocatalytic activity in photocatalytic reactions. On the flip side, p-type CoO polyhedron and n-type ZnCdS nanoparticles are successfully coupled to construct a p-n heterojunction, which accelerated the transfer and separation of electrons and holes, thus enhancing the photocatalytic hydrogen production efficiency. Therefore, the composite catalyst (ZnCdS-CoOdb-20 %) exhibits excellent hydrogen evolution activity (33885 μmol·h·g), which is 9.17 times that of pure ZnCdS (3695 μmol·h·g) and 1.21 times that of ZnCdS-CoO-20 % (27903 μmol·h·g). This work provides a new idea for tuning the photocatalytic morphology to enhance the hydrogen evolution activity.
通过构建独特结构和调控催化剂形貌是提高光催化析氢活性的有效方法。一方面,以ZIF-67为前驱体制备了具有不同形貌的CoO衍生物[CoO(多孔多面体)和CoOdb(空心双壳多面体)]。空心多面体具有比表面积大、密度低、三维空间结构稳定和优异电子传输通道等优点,这为光催化反应中光催化活性的增强提供了巨大优势。另一方面,成功地将p型CoO多面体和n型ZnCdS纳米颗粒耦合构建了p-n异质结,加速了电子和空穴的转移与分离,从而提高了光催化产氢效率。因此,复合催化剂(ZnCdS-CoOdb-20%)表现出优异的析氢活性(33885 μmol·h·g),是纯ZnCdS(3695 μmol·h·g)的9.17倍,是ZnCdS-CoO-20%(27903 μmol·h·g)的1.21倍。这项工作为调控光催化形貌以增强析氢活性提供了新思路。