Suppr超能文献

线粒体动态变化在小胶质细胞激活和代谢转换中的作用。

Role of Mitochondrial Dynamics in Microglial Activation and Metabolic Switch.

机构信息

Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country, Leioa, Spain.

Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Leioa, Spain; and.

出版信息

Immunohorizons. 2021 Aug 10;5(8):615-626. doi: 10.4049/immunohorizons.2100068.

Abstract

Microglia act as sensors of injury in the brain, favoring its homeostasis. Their activation and polarization toward a proinflammatory phenotype are associated with injury and disease. These processes are linked to a metabolic reprogramming of the cells, characterized by high rates of glycolysis and suppressed oxidative phosphorylation. This metabolic switch can be reproduced in vitro by microglial stimulation with LPS plus IFN-γ. To understand the mechanisms regulating mitochondrial respiration abolishment, we examined potential alterations in mitochondrial features during this switch using rat primary microglia. Cells did not show any change in mitochondrial membrane potential, suggesting a limited impact in the mitochondrial viability. We provide evidence that reverse operation of FF-ATP synthase contributes to mitochondrial membrane potential. In addition, we studied the possible implication of mitochondrial dynamics in the metabolic switch using the mitochondrial division inhibitor-1 (Mdivi-1), which blocks dynamin-related protein 1 (Drp1)-dependent mitochondrial fission. Mdivi-1 significantly reduced the expression of proinflammatory markers in LPS plus IFN-γ-treated microglia. However, this inhibition did not lead to a recovery of the oxidative phosphorylation ablation by LPS plus IFN-γ or to a microglia repolarization. Altogether, these results suggest that Drp1-dependent mitochondrial fission, although potentially involved in microglial activation, does not play an essential role in metabolic reprogramming and repolarization of microglia.

摘要

小胶质细胞作为大脑损伤的传感器,有利于其体内平衡。它们的激活和向促炎表型的极化与损伤和疾病有关。这些过程与细胞的代谢重编程有关,其特征是糖酵解率高,氧化磷酸化受到抑制。这种代谢转换可以通过 LPS 和 IFN-γ 刺激体外的小胶质细胞来重现。为了了解调节线粒体呼吸消除的机制,我们使用大鼠原代小胶质细胞检查了在此转换过程中线粒体特征的潜在变化。细胞的线粒体膜电位没有任何变化,表明线粒体活力的影响有限。我们提供的证据表明,FF-ATP 合酶的反向操作有助于线粒体膜电位。此外,我们使用线粒体分裂抑制剂-1(Mdivi-1)研究了线粒体动力学在代谢转换中的可能影响,Mdivi-1 可阻断与 dynamin 相关蛋白 1(Drp1)相关的线粒体裂变。Mdivi-1 可显著降低 LPS 和 IFN-γ 处理的小胶质细胞中促炎标志物的表达。然而,这种抑制并没有导致 LPS 和 IFN-γ 引起的氧化磷酸化消除或小胶质细胞复极化的恢复。总之,这些结果表明,Drp1 依赖性线粒体裂变虽然可能参与小胶质细胞的激活,但在小胶质细胞的代谢重编程和复极化中不起关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验