Wynd B M, Uyeda J C, Nesbitt S J
Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA.
Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
Integr Org Biol. 2021 May 18;3(1):obab017. doi: 10.1093/iob/obab017. eCollection 2021.
Allometry-patterns of relative change in body parts-is a staple for examining how clades exhibit scaling patterns representative of evolutionary constraint on phenotype, or quantifying patterns of ontogenetic growth within a species. Reconstructing allometries from ontogenetic series is one of the few methods available to reconstruct growth in fossil specimens. However, many fossil specimens are deformed (twisted, flattened, and displaced bones) during fossilization, changing their original morphology in unpredictable and sometimes undecipherable ways. To mitigate against post burial changes, paleontologists typically remove clearly distorted measurements from analyses. However, this can potentially remove evidence of individual variation and limits the number of samples amenable to study, which can negatively impact allometric reconstructions. Ordinary least squares (OLS) regression and major axis regression are common methods for estimating allometry, but they assume constant levels of residual variation across specimens, which is unlikely to be true when including both distorted and undistorted specimens. Alternatively, a generalized linear mixed model (GLMM) can attribute additional variation in a model (e.g., fixed or random effects). We performed a simulation study based on an empirical analysis of the extinct cynodont, , to test the efficacy of a GLMM on allometric data. We found that GLMMs estimate the allometry using a full dataset better than simply using only non-distorted data. We apply our approach on two empirical datasets, cranial measurements of actual specimens of ( = 16) and femoral measurements of the dinosaur ( = 26). Taken together, our study suggests that a GLMM is better able to reconstruct patterns of allometry over an OLS in datasets comprised of extinct forms and should be standard protocol for anyone using distorted specimens.
异速生长模式——身体各部分相对变化的模式——是研究进化枝如何展现代表对表型进化约束的缩放模式,或量化物种内个体发育生长模式的主要方法。从个体发育序列重建异速生长模式是可用于重建化石标本生长的少数方法之一。然而,许多化石标本在石化过程中会变形(骨骼扭曲、压扁和移位),以不可预测且有时难以解读的方式改变其原始形态。为了减轻埋藏后的变化,古生物学家通常会从分析中去除明显扭曲的测量数据。然而,这可能会潜在地去除个体变异的证据,并限制适合研究的样本数量,这可能会对异速生长重建产生负面影响。普通最小二乘法(OLS)回归和主轴回归是估计异速生长的常用方法,但它们假设所有标本的残差变异水平恒定,当同时纳入扭曲和未扭曲的标本时,这不太可能是真的。另外,广义线性混合模型(GLMM)可以在模型中归因额外的变异(例如,固定或随机效应)。我们基于对已灭绝犬齿兽类的实证分析进行了一项模拟研究,以测试GLMM对异速生长数据的有效性。我们发现,GLMM使用完整数据集估计异速生长模式比仅使用未扭曲数据要好。我们将我们的方法应用于两个实证数据集,即(n = 16)实际标本的颅骨测量数据和(n = 26)恐龙的股骨测量数据。综上所述,我们的研究表明,在由已灭绝形态组成的数据集中,GLMM比OLS更能重建异速生长模式,并且对于任何使用扭曲标本的人来说都应该是标准方案。