Suppr超能文献

计算不同关系中 CIBS 评分的概率分布及其应用。

Calculation of the Probability Distribution of CIBS Score in Different Relationships and Its Application.

机构信息

Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China.

出版信息

Fa Yi Xue Za Zhi. 2021 Jun;37(3):372-377. doi: 10.12116/j.issn.1004-5619.2020.500311.

Abstract

Objective To derive the probability distribution formula of combined identity by state (CIBS) score among individuals with different relationships based on population data of autosomal multiallelic genetic markers. Methods The probabilities of different identity by state (IBS) scores occurring at a single locus between two individuals with different relationships were derived based on the principle of ITO method. Then the distribution probability formula of CIBS score between two individuals with different relationships when a certain number of genetic markers were used for relationship identification was derived based on the multinomial distribution theory. The formula was compared with the CIBS probability distribution formula based on binomial distribution theory. Results Between individuals with a certain relationship, labelled as RS, the probabilities of IBS=2, 1 and 0 occurring at a certain autosomal genetic marker x (that is, , and ), can be calculated based on the allele frequency data of that genetic marker and the probability of two individuals with the corresponding RS relationship sharing 0, 1 or 2 identity by descent (IBD) alleles (that is, , and ). For a genotyping system with multiple independent genetic markers, the distribution of CIBS score between pairs of individuals with relationships other than parent-child can be deducted using the averages of the 3 probabilities of all genetic markers (that is, , and ), based on multinomial distribution theory. Conclusion The calculation of CIBS score distribution formula can be extended to all kinships and has great application value in case interpretation and system effectiveness evaluation. In most situations, the results based on binomial distribution formula are similar to those based on the formula derived in this study, thus, there is little difference between the two methods in actual work.

摘要

目的 基于常染色体多位点遗传标记的群体数据,推导出不同亲缘关系个体间联合个体识别得分(CIBS)的概率分布公式。

方法 根据 ITO 方法的原理,推导出两个具有不同亲缘关系的个体在单个遗传标记上不同个体识别得分(IBS)出现的概率。然后,根据多项分布理论,推导出当使用一定数量的遗传标记进行亲缘关系识别时,两个具有不同亲缘关系的个体间 CIBS 得分的分布概率公式。并将该公式与基于二项分布理论的 CIBS 概率分布公式进行比较。

结果 在具有某种特定亲缘关系的个体之间,标记为 RS,根据该遗传标记的等位基因频率数据和相应 RS 关系个体共享 0、1 或 2 个共同遗传(IBD)等位基因的概率(即 、 和 ),可以计算出在某个常染色体遗传标记上 IBS=2、1 和 0 出现的概率(即 、 和 )。对于具有多个独立遗传标记的基因分型系统,可以基于多项分布理论,利用所有遗传标记的 3 个概率的平均值(即 、 和 ),推导出除亲子关系以外的个体间 CIBS 得分的分布。

结论 CIBS 得分分布公式的计算可以扩展到所有亲缘关系,在案例解释和系统有效性评估方面具有很大的应用价值。在大多数情况下,基于二项式分布公式的结果与本研究中推导出的公式结果相似,因此,在实际工作中,两种方法之间几乎没有差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验