Suppr超能文献

具有复制空间模式的ordinal 牙周数据的复合似然推断。

Composite likelihood inference for ordinal periodontal data with replicated spatial patterns.

机构信息

School of Economics, Nanjing University of Finance and Economics, Nanjing, P.R. China.

Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Stat Med. 2021 Nov 20;40(26):5871-5893. doi: 10.1002/sim.9160. Epub 2021 Aug 11.

Abstract

Spatial ordinal data observed separately for multiple subjects are common in biomedical research, yet statistical methodology for such ordinal data analysis is limited. The existing methodology often assumes a single realization of spatial ordinal data without replications, a commonplace in disease mapping studies, and thus are not directly applicable. Motivated by a dataset evaluating periodontal disease (PD) status, we propose a multisubject spatial ordinal model that assumes a geostatistical spatial structure within a regression framework through an elegant latent variable representation. For achieving computational scalability within a classical inferential framework, we develop a maximum composite likelihood method for parameter estimation, and establish the asymptotic properties of the parameter estimates. Another major contribution is the development of model diagnostic measures for our dependent data scenario using generalized surrogate residuals. A simulation study suggests sound finite sample properties of the proposed methods. We also illustrate our proposed methodology via application to the motivating PD dataset. A companion R package clordr is available for easy implementation.

摘要

多主体空间有序数据在生物医学研究中很常见,但针对此类有序数据分析的统计方法有限。现有的方法通常假设空间有序数据只有一次实现而没有重复,这在疾病图谱研究中很常见,因此并不直接适用。受评估牙周病(PD)状况数据集的启发,我们提出了一种多主体空间有序模型,该模型通过巧妙的潜在变量表示,在回归框架内假设了一个地质统计学空间结构。为了在经典推理框架内实现计算可扩展性,我们开发了一种最大复合似然方法来进行参数估计,并建立了参数估计的渐近性质。另一个主要贡献是针对我们的相依数据情况,使用广义替代残差开发了模型诊断措施。一项模拟研究表明,所提出方法在有限样本中的性能良好。我们还通过对激励 PD 数据集的应用来说明我们建议的方法。一个配套的 R 包 clordr 可用于方便地实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验