Desantis Stacia M, Houseman E Andrés, Coull Brent A, Stemmer-Rachamimov Anat, Betensky Rebecca A
Department of Biostatistics, Harvard University, 655 Huntington Avenue, Boston, MA 02115, USA.
Biostatistics. 2008 Apr;9(2):249-62. doi: 10.1093/biostatistics/kxm026. Epub 2007 Jul 11.
Latent class models provide a useful framework for clustering observations based on several features. Application of latent class methodology to correlated, high-dimensional ordinal data poses many challenges. Unconstrained analyses may not result in an estimable model. Thus, information contained in ordinal variables may not be fully exploited by researchers. We develop a penalized latent class model to facilitate analysis of high-dimensional ordinal data. By stabilizing maximum likelihood estimation, we are able to fit an ordinal latent class model that would otherwise not be identifiable without application of strict constraints. We illustrate our methodology in a study of schwannoma, a peripheral nerve sheath tumor, that included 3 clinical subtypes and 23 ordinal histological measures.
潜在类别模型为基于多个特征对观察结果进行聚类提供了一个有用的框架。将潜在类别方法应用于相关的高维有序数据会带来许多挑战。无约束分析可能无法得到一个可估计的模型。因此,研究人员可能无法充分利用有序变量中包含的信息。我们开发了一种惩罚潜在类别模型,以促进对高维有序数据的分析。通过稳定最大似然估计,我们能够拟合一个有序潜在类别模型,否则在不应用严格约束的情况下该模型将无法识别。我们在一项关于神经鞘瘤(一种周围神经鞘肿瘤)的研究中阐述了我们的方法,该研究包括3种临床亚型和23项有序组织学指标。