Suppr超能文献

一种用于有序数据的惩罚潜在类别模型。

A penalized latent class model for ordinal data.

作者信息

Desantis Stacia M, Houseman E Andrés, Coull Brent A, Stemmer-Rachamimov Anat, Betensky Rebecca A

机构信息

Department of Biostatistics, Harvard University, 655 Huntington Avenue, Boston, MA 02115, USA.

出版信息

Biostatistics. 2008 Apr;9(2):249-62. doi: 10.1093/biostatistics/kxm026. Epub 2007 Jul 11.

Abstract

Latent class models provide a useful framework for clustering observations based on several features. Application of latent class methodology to correlated, high-dimensional ordinal data poses many challenges. Unconstrained analyses may not result in an estimable model. Thus, information contained in ordinal variables may not be fully exploited by researchers. We develop a penalized latent class model to facilitate analysis of high-dimensional ordinal data. By stabilizing maximum likelihood estimation, we are able to fit an ordinal latent class model that would otherwise not be identifiable without application of strict constraints. We illustrate our methodology in a study of schwannoma, a peripheral nerve sheath tumor, that included 3 clinical subtypes and 23 ordinal histological measures.

摘要

潜在类别模型为基于多个特征对观察结果进行聚类提供了一个有用的框架。将潜在类别方法应用于相关的高维有序数据会带来许多挑战。无约束分析可能无法得到一个可估计的模型。因此,研究人员可能无法充分利用有序变量中包含的信息。我们开发了一种惩罚潜在类别模型,以促进对高维有序数据的分析。通过稳定最大似然估计,我们能够拟合一个有序潜在类别模型,否则在不应用严格约束的情况下该模型将无法识别。我们在一项关于神经鞘瘤(一种周围神经鞘肿瘤)的研究中阐述了我们的方法,该研究包括3种临床亚型和23项有序组织学指标。

相似文献

1
A penalized latent class model for ordinal data.
Biostatistics. 2008 Apr;9(2):249-62. doi: 10.1093/biostatistics/kxm026. Epub 2007 Jul 11.
3
A latent model to detect multiple clusters of varying sizes.
Biometrics. 2009 Dec;65(4):1011-20. doi: 10.1111/j.1541-0420.2009.01197.x.
4
Composite likelihood inference for ordinal periodontal data with replicated spatial patterns.
Stat Med. 2021 Nov 20;40(26):5871-5893. doi: 10.1002/sim.9160. Epub 2021 Aug 11.
5
Parametric latent class joint model for a longitudinal biomarker and recurrent events.
Stat Med. 2007 Dec 20;26(29):5285-302. doi: 10.1002/sim.2915.
7
Feature-specific penalized latent class analysis for genomic data.
Biometrics. 2006 Dec;62(4):1062-70. doi: 10.1111/j.1541-0420.2006.00566.x.
8
A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses.
Psychometrika. 2012 Jul;77(3):425-41. doi: 10.1007/s11336-012-9264-6. Epub 2012 Mar 30.
9
Ordinal probability effect measures for group comparisons in multinomial cumulative link models.
Biometrics. 2017 Mar;73(1):214-219. doi: 10.1111/biom.12565. Epub 2016 Jul 20.
10
Latent class analysis in medical research.
Stat Methods Med Res. 1996 Jun;5(2):179-211. doi: 10.1177/096228029600500205.

引用本文的文献

1
OUTCOME-GUIDED DISEASE SUBTYPING BY GENERATIVE MODEL AND WEIGHTED JOINT LIKELIHOOD IN TRANSCRIPTOMIC APPLICATIONS.
Ann Appl Stat. 2024 Sep;18(3):1947-1964. doi: 10.1214/23-aoas1865. Epub 2024 Aug 5.
3
Regularized Latent Class Analysis for Polytomous Item Responses: An Application to SPM-LS Data.
J Intell. 2020 Aug 14;8(3):30. doi: 10.3390/jintelligence8030030.
5
Biclustering Models for Two-Mode Ordinal Data.
Psychometrika. 2016 Sep;81(3):611-24. doi: 10.1007/s11336-016-9503-3. Epub 2016 Jun 21.
6
Sparse cluster analysis of large-scale discrete variables with application to single nucleotide polymorphism data.
J Appl Stat. 2013 Feb 1;40(2):358-367. doi: 10.1080/02664763.2012.743977. Epub 2012 Nov 21.
7
Supervised Bayesian latent class models for high-dimensional data.
Stat Med. 2012 Jun 15;31(13):1342-60. doi: 10.1002/sim.4448. Epub 2012 Apr 11.
9
Examining the joint effect of multiple risk factors using exposure risk profiles: lung cancer in nonsmokers.
Environ Health Perspect. 2011 Jan;119(1):84-91. doi: 10.1289/ehp.1002118. Epub 2010 Oct 4.

本文引用的文献

1
Feature-specific penalized latent class analysis for genomic data.
Biometrics. 2006 Dec;62(4):1062-70. doi: 10.1111/j.1541-0420.2006.00566.x.
2
Increasing the specificity of diagnostic criteria for schwannomatosis.
Neurology. 2006 Mar 14;66(5):730-2. doi: 10.1212/01.wnl.0000201190.89751.41.
3
Diagnostic criteria for schwannomatosis.
Neurology. 2005 Jun 14;64(11):1838-45. doi: 10.1212/01.WNL.0000163982.78900.AD.
4
Joint analysis of time-to-event and multiple binary indicators of latent classes.
Biometrics. 2004 Mar;60(1):85-92. doi: 10.1111/j.0006-341X.2004.00141.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验