Li Shihao, Zhang Haiyan, Li Huangxu, Zhang Shuai, Zhu Bin, Wang Sha, Zheng Jingqiang, Liu Fangyan, Zhang Zhian, Lai Yanqing
School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, Hunan 410083, P. R. China.
Hunan ChangYuan LiCo Co., Ltd, Changsha, Hunan 410205, P. R. China.
ACS Appl Mater Interfaces. 2021 Aug 25;13(33):39480-39490. doi: 10.1021/acsami.1c11178. Epub 2021 Aug 12.
Li-rich Mn-based layered oxide cathodes (LLOs) are considered to be the most promising cathode candidates for lithium-ion batteries owing to their high-voltage platform and ultrahigh specific capacity originating from anionic redox. However, anionic redox results in many problems including irreversible oxygen release, voltage hysteresis, and so on. Although many efforts have been made to regulate anionic redox, a fundamental issue, the effect of lithium vacancies on anionic redox, is still unclear. Herein, we synthesized a series of LLO materials with different lithium vacancy contents by controlling the amount of lithium salt. Specifically, lithium-vacancy-type LLOs LiNiCoMnO with a pompon morphology exhibit an ultrahigh specific capacity (293.9 mA h g at 0.1 C), an outstanding long-term cycling stability (173.5 mA h g after 300 cycles at 1 C), and an excellent rate performance (106 mA h g at 10 C). It reveals that lithium vacancy is a key factor to enhance anionic redox activity and reversibility. Lithium vacancies exhibit different inductive effects on the structure of the surface and bulk. Abundant surface oxygen vacancies and a surface spinel phase layer induced by lithium vacancies suppress irreversible oxygen release, while the bulk phase transformation and cation disorder combined with sufficient lithium vacancies in the bulk stabilize structure and improve anionic redox kinetic. The findings offer a significant theoretical guidance for the practical application of LLO materials.
富锂锰基层状氧化物阴极(LLOs)因其高电压平台和源自阴离子氧化还原的超高比容量,被认为是锂离子电池最有前景的阴极候选材料。然而,阴离子氧化还原会导致许多问题,包括不可逆的氧释放、电压滞后等。尽管人们已经做出了许多努力来调节阴离子氧化还原,但一个基本问题,即锂空位对阴离子氧化还原的影响,仍然不清楚。在此,我们通过控制锂盐的用量合成了一系列具有不同锂空位含量的LLO材料。具体而言,具有绒球形态的锂空位型LLO LiNiCoMnO表现出超高的比容量(0.1 C时为293.9 mA h g)、出色的长期循环稳定性(1 C下300次循环后为173.5 mA h g)和优异的倍率性能(10 C时为106 mA h g)。这表明锂空位是增强阴离子氧化还原活性和可逆性的关键因素。锂空位对表面和体相结构表现出不同的诱导效应。锂空位诱导产生的丰富表面氧空位和表面尖晶石相层抑制了不可逆的氧释放,而体相中的体相转变和阳离子无序与充足的锂空位相结合,稳定了结构并改善了阴离子氧化还原动力学。这些发现为LLO材料的实际应用提供了重要的理论指导。